满分5 > 初中数学试题 >

如图,抛物线y=-x2+x-2与x轴相交于点A、B,与y轴相交于点C. (1)求...

manfen5.com 满分网如图,抛物线y=-manfen5.com 满分网x2+manfen5.com 满分网x-2与x轴相交于点A、B,与y轴相交于点C.
(1)求证:△AOC∽△COB;
(2)过点C作CD∥x轴交抛物线于点D.若点P在线段AB上以每秒1个单位的速度由A向B运动,同时点Q在线段CD上也以每秒1个单位的速度由D向C运动,则经过几秒后,PQ=AC.
(1)可先根据抛物线的解析式求出A,B,C的坐标,然后看OA,OC,OB是否对应成比例即可; (2)根据抛物线的对称性可知:AC=BD,四边形ABDC为等腰梯形,那么本题可分两种情况进行求【解析】 ①当四边形APQC是等腰梯形,即四边形PQDB是平行四边形时,AC=PQ,那么QD=PB,可据此来求t的值. ②当四边形ACQP是平行四边形时,AC=PQ,那么此时AP=CQ,可据此求出t的值. 【解析】 (1)在抛物线y=-x2+x-2上, 令y=0时,即-x2+x-2=0, 得x1=1,x2=4 令x=0时,y=-2 ∴A(1,0),B(4,0),C(0,-2)(3分) ∴OA=1,OB=4,OC=2 ∴, ∴ 又∵∠AOC=∠BOC ∴△AOC∽△COB; (2)设经过t秒后,PQ=AC. 由题意得:AP=DQ=t, ∵A(1,0)、B(4,0) ∴AB=3 ∴BP=3-t ∵CD∥x轴,点C(0,-2) ∴点D的纵坐标为-2 ∵点D在抛物线y=-x2+x-2上 ∴D(5,-2) ∴CD=5 ∴CQ=5-t ①当AP=CQ,即四边形APQC是平行四边形时,PQ=AC. t=5-t,t=2.5 ②连接BD,当DQ=BP,即四边形PBDQ是平行四边形时,PQ=BD=AC. t=3-t,t=1.5, 所以,经过2.5秒或1.5秒时,PQ=AC.
复制答案
考点分析:
相关试题推荐
如图,在Rt△ABC中,∠BAC=90°,AB=AC=2,点D在BC上运动(不能到达B,C点),过D作∠ADE=45°,DE交AC于E.
(1)求证:△ABD∽△DCE;
(2)设BD=x,AE=y,求y关于x的函数表达式;
(3)当△ADE是等腰三角形时,求AE的长.

manfen5.com 满分网 查看答案
manfen5.com 满分网如图抛物线y=manfen5.com 满分网,x轴于A、B两点,交y轴于点C,顶点为D.
(1)求A、B、C的坐标;
(2)把△ABC绕AB的中点M旋转180°,得到四边形AEBC:
①求E点坐标;
②试判断四边形AEBC的形状,并说明理由;
(3)试探索:在直线BC上是否存在一点P,使得△PAD的周长最小?若存在,请求出P点的坐标;若不存在,请说明理由.
查看答案
如图1所示,一张三角形纸片ABC,∠ACB=90°,AC=8,BC=6.沿斜边AB的中线CD把这张纸片剪成△AC1D1和△BC2D2两个三角形(如图所示).将纸片△AC1D1沿直线D2B(AB)方向平移(点A,D1,D2,B始终在同一直线上),当点D1于点B重合时,停止平移.在平移过程中,C1D1与BC2交于点E,AC1与C2D2、BC2分别交于点F、P.
(1)当△AC1D1平移到如图3所示的位置时,猜想图中的D1E与D2F的数量关系,并证明你的猜想;
(2)设平移距离D2D1为x,△AC1D1与△BC2D2重叠部分面积为y,请写出y与x的函数关系式,以及自变量的取值范围;
(3)对于(2)中的结论是否存在这样的x的值使得y=manfen5.com 满分网S△ABC;若不存在,请说明理由.
manfen5.com 满分网
查看答案
已知:m、n是方程x2-6x+5=0的两个实数根,且m<n,抛物线y=-x2+bx+c的图象经过点manfen5.com 满分网A(m,0)、B(0,n).
(1)求这个抛物线的解析式;
(2)设(1)中抛物线与x轴的另一交点为C,抛物线的顶点为D,试求出点C、D的坐标和△BCD的面积;
(3)P是线段OC上的一点,过点P作PH⊥x轴,与抛物线交于H点,若直线BC把△PCH分成面积之比为2:3的两部分,请求出P点的坐标.
查看答案
如图,已知抛物线l1:y=x2-4的图象与x轴相交于A、C两点,B是抛物线l1上的动点(B不与A、C重合),抛物线l2与l1关于x轴对称,以AC为对角线的平行四边形ABCD的第四个顶点为D.
(1)求l2的解析式;
(2)求证:点D一定在l2上;
(3)▱ABCD能否为矩形?如果能为矩形,求这些矩形公共部分的面积(若只有一个矩形符合条件,则求此矩形的面积);如果不能为矩形,请说明理由.
注:计算结果不取近似值.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.