满分5 > 初中数学试题 >

已知抛物线C1:y=-x2+2mx+n(m,n为常数,且m≠0,n>0)的顶点为...

已知抛物线C1:y=-x2+2mx+n(m,n为常数,且m≠0,n>0)的顶点为A,与y轴交于点C;抛物线C2与抛物线C1关于y轴对称,其顶点为B,连接AC,BC,AB.
注:抛物线y=ax2+bx+c(a≠0)的顶点坐标为manfen5.com 满分网
(1)请在横线上直接写出抛物线C2的解析式:______
(2)当m=1时,判定△ABC的形状,并说明理由;
(3)抛物线C1上是否存在点P,使得四边形ABCP为菱形?如果存在,请求出m的值;如果不存在,请说明理由.

manfen5.com 满分网
(1)根据轴对称的性质可得:关于y轴对称,纵坐标不变,横坐标互为相反数,即可求得; (2)根据轴对称的性质可得:AC=BC等腰三角形,借助于辅助线,又可求得∠ACy=45°,可得△ABC为等腰直角三角形; (3)首先假设成立,根据菱形的性质求解,求得m=±,所以存在. 【解析】 (1)y=-x2-2mx+n.(2分) (2)当m=1时,△ABC为等腰直角三角形.(3分) 理由如下:如图: ∵点A与点B关于y轴对称,点C又在y轴上, ∴AC=BC.(4分) 过点A作抛物线C1的对称轴交x轴于D,过点C作CE⊥AD于E. ∴当m=1时,顶点A的坐标为A(1,1+n), ∴CE=1. 又∵点C的坐标为(0,n), ∴AE=1+n-n=1. ∴AE=CE. 从而∠ECA=45°, ∴∠ACy=45度. 由对称性知∠BCy=∠ACy=45°, ∴∠ACB=90度. ∴△ABC为等腰直角三角形.(7分) (3)假设抛物线C1上存在点P,使得四边形ABCP为菱形,则PC=AB=BC. 由(2)知,AC=BC, ∴AB=BC=AC. 从而△ABC为等边三角形.(8分) ∴∠ACy=∠BCy=30度. ∵四边形ABCP为菱形,且点P在C1上, ∴点P与点C关于AD对称. ∴PC与AD的交点也为点E, 因此∠ACE=90°-30°=60度. ∵点A,C的坐标分别为A(m,m2+n),C(0,n), ∴AE=m2+n-n=m2,CE=|m|. 在Rt△ACE中,tan60°===. ∴|m|=,∴m=±. 故抛物线C1上存在点P,使得四边形ABCP为菱形, 此时m=±.(12分) 说明:只求出m的一个值扣(2分).
复制答案
考点分析:
相关试题推荐
manfen5.com 满分网如图,抛物线y=-manfen5.com 满分网x2+manfen5.com 满分网x-2与x轴相交于点A、B,与y轴相交于点C.
(1)求证:△AOC∽△COB;
(2)过点C作CD∥x轴交抛物线于点D.若点P在线段AB上以每秒1个单位的速度由A向B运动,同时点Q在线段CD上也以每秒1个单位的速度由D向C运动,则经过几秒后,PQ=AC.
查看答案
如图,在Rt△ABC中,∠BAC=90°,AB=AC=2,点D在BC上运动(不能到达B,C点),过D作∠ADE=45°,DE交AC于E.
(1)求证:△ABD∽△DCE;
(2)设BD=x,AE=y,求y关于x的函数表达式;
(3)当△ADE是等腰三角形时,求AE的长.

manfen5.com 满分网 查看答案
manfen5.com 满分网如图抛物线y=manfen5.com 满分网,x轴于A、B两点,交y轴于点C,顶点为D.
(1)求A、B、C的坐标;
(2)把△ABC绕AB的中点M旋转180°,得到四边形AEBC:
①求E点坐标;
②试判断四边形AEBC的形状,并说明理由;
(3)试探索:在直线BC上是否存在一点P,使得△PAD的周长最小?若存在,请求出P点的坐标;若不存在,请说明理由.
查看答案
如图1所示,一张三角形纸片ABC,∠ACB=90°,AC=8,BC=6.沿斜边AB的中线CD把这张纸片剪成△AC1D1和△BC2D2两个三角形(如图所示).将纸片△AC1D1沿直线D2B(AB)方向平移(点A,D1,D2,B始终在同一直线上),当点D1于点B重合时,停止平移.在平移过程中,C1D1与BC2交于点E,AC1与C2D2、BC2分别交于点F、P.
(1)当△AC1D1平移到如图3所示的位置时,猜想图中的D1E与D2F的数量关系,并证明你的猜想;
(2)设平移距离D2D1为x,△AC1D1与△BC2D2重叠部分面积为y,请写出y与x的函数关系式,以及自变量的取值范围;
(3)对于(2)中的结论是否存在这样的x的值使得y=manfen5.com 满分网S△ABC;若不存在,请说明理由.
manfen5.com 满分网
查看答案
已知:m、n是方程x2-6x+5=0的两个实数根,且m<n,抛物线y=-x2+bx+c的图象经过点manfen5.com 满分网A(m,0)、B(0,n).
(1)求这个抛物线的解析式;
(2)设(1)中抛物线与x轴的另一交点为C,抛物线的顶点为D,试求出点C、D的坐标和△BCD的面积;
(3)P是线段OC上的一点,过点P作PH⊥x轴,与抛物线交于H点,若直线BC把△PCH分成面积之比为2:3的两部分,请求出P点的坐标.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.