满分5 > 初中数学试题 >

已知抛物线y=ax2+bx+c与y轴的交点为C,顶点为M,直线CM的解析式y=-...

已知抛物线y=ax2+bx+c与y轴的交点为C,顶点为M,直线CM的解析式y=-x+2并且线段CM的长为manfen5.com 满分网
(1)求抛物线的解析式;
(2)设抛物线与x轴有两个交点A(x1,0)、B(x2,0),且点A在B的左侧,求线段AB的长;
(3)若以AB为直径作⊙N,请你判断直线CM与⊙N的位置关系,并说明理由.

manfen5.com 满分网
(1)利用C为抛物线和直线的公共点,根据直线解析式可求得C点坐标,进而求出c的值;利用M为抛物线和直线的公共点,将抛物线顶点坐标代入直线,求出b的值;过M点作y轴的垂线,垂足为Q,构造直角三角形,利用勾股定理求出a的值; (2)依据两点之间距离公式求解即可.已知抛物线与x轴有两个交点,故求出抛物线应为:y=-x2-2x+2.抛物线与x轴有两个交点且点A在B的左侧,故|AB|=|x1-x2|=4; (3)求出⊙N半径和直线到圆心的距离,比较它们的大小即可判断其位置关系. 【解析】 (1)解法一: 由已知,直线CM:y=-x+2与y轴交于点C(0,2) 抛物线y=ax2+bx+c过点C(0,2), 所以c=2,抛物线y=ax2+bx+c的顶点M(-,)在直线CM上, 所以=+2, 解得b=0或b=-2(2分) 若b=0,点C、M重合,不合题意,舍去, 所以b=-2.即M(,2-) 过M点作y轴的垂线,垂足为Q, 在Rt△CMQ中,CM2=CQ2+QM2 所以,8=()2+[2-(2-)]2, 解得,a=±. ∴所求抛物线为:y=-x2-2x+2或y=x2-2x+2(4分) 以下同下. 解法二:由题意得C(0,2), 设点M的坐标为M(x,y) ∵点M在直线y=-x+2上, ∴y=-x+2 由勾股定理得CM=, 由勾股定理得CM=, ∵CM=2,即x2+(y-2)2=8 解方程组 得,(2分) ∴M(-2,4)或M‘(2,0) 当M(-2,4)时, 设抛物线解析式为y=a(x+2)2+4, ∵抛物线过(0,2)点, ∴a=-, ∴y=-x2-2x+2(3分) 当M‘(2,0)时, 设抛物线解析式为y=a(x-2)2 ∵抛物线过(0,2)点, ∴a=, ∴y=-x2-2x+2 ∴所求抛物线为:y=-x2-2x+2或y=x2-2x+2(4分); (2)∵抛物线与x轴有两个交点, ∴y=x2-2x+2不合题意,舍去. ∴抛物线应为:y=-x2-2x+2(6分) 抛物线与x轴有两个交点且点A在B的左侧, ∴y=-x2-2x+2=0, 得AB=|x1-x2|==4;(8分) (3)∵AB是⊙N的直径, ∴r=,N(-2,0), 又∵M(-2,4), ∴MN=4 设直线y=-x+2与x轴交于点D,则D(2,0), ∴DN=4,可得MN=DN, ∴∠MDN=45°,作NG⊥CM于G,在Rt△NGD中, NG=DN•sin45°=2=r(10分) 即圆心到直线CM的距离等于⊙N的半径 ∴直线CM与⊙N相切(12分).
复制答案
考点分析:
相关试题推荐
如图,在直角坐标系中,O为原点.点A在x轴的正半轴上,点B在y轴的正半轴上,tan∠OAB=2.二次函数y=x2+mx+2的图象经过点A,B,顶点为D.
(1)求这个二次函数的解析式;
(2)将△OAB绕点A顺时针旋转90°后,点B落到点C的位置.将上述二次函数图象沿y轴向上或向下平移后经过点C.请直接写出点C的坐标和平移后所得图象的函数解析式;
(3)设(2)中平移后所得二次函数图象与y轴的交点为B1,顶点为D1.点P在平移后的二次函数manfen5.com 满分网图象上,且满足△PBB1的面积是△PDD1面积的2倍,求点P的坐标.
查看答案
已知抛物线C1:y=-x2+2mx+n(m,n为常数,且m≠0,n>0)的顶点为A,与y轴交于点C;抛物线C2与抛物线C1关于y轴对称,其顶点为B,连接AC,BC,AB.
注:抛物线y=ax2+bx+c(a≠0)的顶点坐标为manfen5.com 满分网
(1)请在横线上直接写出抛物线C2的解析式:______
(2)当m=1时,判定△ABC的形状,并说明理由;
(3)抛物线C1上是否存在点P,使得四边形ABCP为菱形?如果存在,请求出m的值;如果不存在,请说明理由.

manfen5.com 满分网 查看答案
manfen5.com 满分网如图,抛物线y=-manfen5.com 满分网x2+manfen5.com 满分网x-2与x轴相交于点A、B,与y轴相交于点C.
(1)求证:△AOC∽△COB;
(2)过点C作CD∥x轴交抛物线于点D.若点P在线段AB上以每秒1个单位的速度由A向B运动,同时点Q在线段CD上也以每秒1个单位的速度由D向C运动,则经过几秒后,PQ=AC.
查看答案
如图,在Rt△ABC中,∠BAC=90°,AB=AC=2,点D在BC上运动(不能到达B,C点),过D作∠ADE=45°,DE交AC于E.
(1)求证:△ABD∽△DCE;
(2)设BD=x,AE=y,求y关于x的函数表达式;
(3)当△ADE是等腰三角形时,求AE的长.

manfen5.com 满分网 查看答案
manfen5.com 满分网如图抛物线y=manfen5.com 满分网,x轴于A、B两点,交y轴于点C,顶点为D.
(1)求A、B、C的坐标;
(2)把△ABC绕AB的中点M旋转180°,得到四边形AEBC:
①求E点坐标;
②试判断四边形AEBC的形状,并说明理由;
(3)试探索:在直线BC上是否存在一点P,使得△PAD的周长最小?若存在,请求出P点的坐标;若不存在,请说明理由.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.