已知抛物线y
1=x
2-2x+c的部分图象如图1所示.
(1)求c的取值范围;
(2)若抛物线经过点(0,-1),试确定抛物线y
1=x
2-2x+c的解析式;
(3)若反比例函数
的图象经过(2)中抛物线上点(1,a),试在图2所示直角坐标系中,画出该反比例函数及(2)中抛物线的图象,并利用图象比较y
1与y
2的大小.
考点分析:
相关试题推荐
如图,在Rt△ABC中,∠C=90°,AC=12,BC=16,动点P从点A出发沿AC边向点C以每秒3个单位长的速度运动,动点Q从点C出发沿CB边向点B以每秒4个单位长的速度运动.P,Q分别从点A,C同时出发,当其中一点到达端点时,另一点也随之停止运动.在运动过程中,△PCQ关于直线PQ对称的图形是△PDQ.设运动时间为t(秒).
(1)设四边形PCQD的面积为y,求y与t的函数关系式;
(2)t为何值时,四边形PQBA是梯形;
(3)是否存在时刻t,使得PD∥AB?若存在,求出t的值;若不存在,请说明理由;
(4)通过观察、画图或折纸等方法,猜想是否存在时刻t,使得PD⊥AB?若存在,请估计t的值在括号中的哪个时间段内(0≤t≤1;1<t≤2;2<t≤3;3<t≤4);若不存在,请简要说明理由.
查看答案
二次函数y=
x
2的图象如图所示,过y轴上一点M(0,2)的直线与抛物线交于A,B两点,过点A,B分别作y轴的垂线,垂足分别为C,D.
(1)当点A的横坐标为-2时,求点B的坐标;
(2)在(1)的情况下,分别过点A,B作AE⊥x轴于E,BF⊥x轴于F,在EF上是否存在点P,使∠APB为直角?若存在,求点P的坐标;若不存在,请说明理由;
(3)当点A在抛物线上运动时(点A与点O不重合),求AC•BD的值.
查看答案
如图1,以矩形OABC的两边OA和OC所在的直线为x轴、y轴建立平面直角坐标系,A点的坐标为(3,0),C点的坐标为(0,4).将矩形OABC绕O点逆时针旋转,使B点落在y轴的正半轴上,旋转后的矩形为OA
1B
1C
1,BC,A
1B
1相交于点M.
(1)求点B
1的坐标与线段B
1C的长;
(2)将图1中的矩形OA
1B
1C
1沿y轴向上平移,如图2,矩形PA
2B
2C
2是平移过程中的某一位置,BC,A
2B
2相交于点M
1,点P运动到C点停止.设点P运动的距离为x,矩形PA
2B
2C
2与原矩形OABC重叠部分的面积为y,求y关于x的函数关系式,并写出x的取值范围;
(3)如图3,当点P运动到点C时,平移后的矩形为PA
3B
3C
3.请你思考如何通过图形变换使矩形PA
3B
3C
3与原矩形OABC重合,请简述你的做法.
查看答案
在Rt△ABC中,∠C=90°,∠A=60°,BC=6,等边三角形DEF从初始位置(点E与点B重合,EF落在BC上,如图1所示)在线段BC上沿BC方向以每秒1个单位的速度平移,DE、DF分别与AB相交于点M、N.当点F运动到点C时,△DEF终止运动,此时点D恰好落在AB上,设△DEF平移的时间为x.
(1)求△DEF的边长;
(2)求M点、N点在BA上的移动速度;
(3)在△DEF开始运动的同时,如果点P以每秒2个单位的速度从D点出发沿DE⇒EF运动,最终运动到F点.若设△PMN的面积为y,求y与x的函数关系式,写出它的定义域;并说明当P点在何处时,△PMN的面积最大?
查看答案
九(1)班数学兴趣小组在社会实践活动中,进行了如下的课题研究:用一定长度的铝合金材料,将它设计成外观为长方形的三种框架,使长方形框架面积最大.
小组讨论后,同学们做了以下三种试验:
请根据以上图案回答下列问题:
(1)在图案1中,如果铝合金材料总长度(图中所有黑线的长度和)为6m,当AB为1m,长方形框架ABCD的面积是______m
2;
(2)在图案2中,如果铝合金材料总长度为6m,设AB为xm,长方形框架ABCD的面积为S=______(用含x的代数式表示);当AB=______m时,长方形框架ABCD的面积S最大;在图案3中,如果铝合金材料总长度为lm,设AB为xm,当AB=______m时,长方形框架ABCD的面积S最大.
(3)经过这三种情形的试验,他们发现对于图案4这样的情形也存在着一定的规律.探索:如图案4如果铝合金材料总长度为lm共有n条竖档时,那么当竖档AB多少时,长方形框架ABCD的面积最大.
查看答案