满分5 > 初中数学试题 >

已知:如图,二次函数y=2x2-2的图象与x轴交于A、B两点(点A在点B的左边)...

已知:如图,二次函数y=2x2-2的图象与x轴交于A、B两点(点A在点B的左边),与y轴交于点C,直线x=m(m>1)与x轴交于点D.
(1)求A、B、C三点的坐标;
(2)在直线x=m(m>1)上有一点P(点P在第一象限),使得以P、D、B为顶点的三角形与以B、C、O为顶点的三角形相似,求P点坐标(用含m的代数式表示);
(3)在(2)成立的条件下,试问:抛物线y=2x2-2上是否存在一点Q,使得四边形ABPQ为平行四边形?如果存在这样的点Q,请求出m的值;如果不存在,请简要说明理由.

manfen5.com 满分网
(1)令二次函数解析式中x=0,可得出C点坐标,令y=0,可得出A、B的坐标. (2)由于∠PDB=∠BOC=90°,因此本题可分两种情况进行讨论: ①当△PDB∽△COB时;②当△PDB∽△BOC时;可根据不同的相似三角形得出的不同的对应线段成比例来求出DP的长,即可表示出P点的坐标. (3)若四边形ABPQ为平行四边形,那么Q点的坐标可有P点坐标向左平移AB个单位来得出,然后将Q点坐标代入抛物线的解析式中即可求得m的值. 【解析】 (1)令y=0得2x2-2=0 解得x=±1, 点A为(-1,0),点B为(1,0), 令x=0,得y=-2, 所以点C为(0,-2). (2)当△PDB∽△COB时,有, ∵BD=m-1,OC=2,OB=1, ∴=, ∴PD=2(m-1), ∴P1(m,2m-2). 当△PDB∽△BOC时,, ∵OB=1,BD=m-1,OC=2, ∴=, PD=, ∴P2(m,-). (3)假设抛物线y=2x2-2上存在一点Q,使得四边形ABPQ为平行四边形, ∴PQ=AB=2,点Q的横坐标为m-2. 当点P1为(m,2m-2)时, 点Q1的坐标是(m-2,2m-2)(9分) ∵点Q1在抛物线y=2x2-2图象上, ∴2m-2=2(m-2)2-2,m-1=m2-4m+4-1, m2-5m+4=0,m1=1(舍去),m2=4. 当点P2为(m,-)时, 点Q2的坐标是(m-2,-), ∵Q2在抛物线y=2x2-2图象上, ∴-=2(m-2)2-2,m-1=4(m-2)2-4m-1, =4m2-16m+16-44m2-17m+13=0, ∴(m-1)(4m-13)=0, ∴m3=1(舍去),m4=, ∴m的值为4、.
复制答案
考点分析:
相关试题推荐
已知:如图,等腰梯形ABCD的边BC在x轴上,点A在y轴的正方向上,A(0,6),D(4,6),且AB=2manfen5.com 满分网
(1)求点B的坐标;
(2)求经过B、D两点的抛物线y=ax2+bx+6的解析式;
(3)在(2)中所求的抛物线上是否存在一点P,使得manfen5.com 满分网?若存在,请求出该点坐标,若不存在,请说明理由.

manfen5.com 满分网 查看答案
如图,抛物线y=-x2+5x+n经过点A(1,0),与y轴交于点B.
(1)求抛物线的解析式;
(2)P是y轴正半轴上一点,且△PAB是以AB为腰的等腰三角形,试求P点坐标.

manfen5.com 满分网 查看答案
在平面直角坐标系中,给定以下五点A(-2,0),B(1,0),C(4,0),D(-2,manfen5.com 满分网),E(0,-6).从这五点中选取三点,使经过这三点的抛物线满足以平行于y轴的直线为对称轴.我们约定:把经过三点A、E、B的抛物线表示为抛物线AEB.(如图所示)
(1)问符合条件的抛物线还有哪几条?不求解析式,请用约定的方法一一表示出来;
(2)在(1)中是否存在这样的一条抛物线,它与余下的两点所确定的直线不相交?如果存在,试求出抛物线及直线的解析式;如果不存在,请说明理由.

manfen5.com 满分网 查看答案
如图,在直角坐标系中,以点P(1,-1)为圆心,2为半径作圆,交x轴于A、B两点,抛物线y=ax2+bx+c(a>0)过点A、B,且顶点C在⊙P上.
(1)求⊙P上劣弧AB的长;
(2)求抛物线的解析式;
(3)在抛物线上是否存在一点D,使线段OC与PD互相平分?若存在,求出点D的坐标;若不存在,请说明理由.

manfen5.com 满分网 查看答案
如图,在直角坐标系中,正方形ABOD的边长为a,O为原点,点B在x轴的负半轴上,点D在y轴的正半轴上,直线OE的解析式为y=2x,直线CF过x轴上的一点C(manfen5.com 满分网,0)且与OE平行,现正方形以每秒manfen5.com 满分网的速度匀速沿x轴正方向平行移动,设运动时间为t秒,正方形被夹在直线OE和CF间的部分的面积为S.
(1)当0≤t<4时,写出S与t的函数关系式;
(2)当4≤t≤5时,写出S与t的函数关系式,在这个范围内S有无最大值?若有,请求出最大值,若没有请说明理由.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.