满分5 > 初中数学试题 >

如图,在平面直角坐标系中,矩形OABC的顶点A(0,3),C(-1,0),将矩形...

如图,在平面直角坐标系中,矩形OABC的顶点A(0,3),C(-1,0),将矩形OABC绕原点顺时针旋转90°,得到矩形OA′B′C′.设直线BB′与x轴交于点M、与y轴交于点N,抛物线y=ax2+2x+c的图象经过点C、M、N.解答下列问题:
(1)分别求出直线BB′和抛物线所表示的函数解析式;
(2)将△MON沿直线MN翻折,点O落在点P处,请你判断点P是否在抛物线上,说明理由;
(3)将抛物线进行平移(沿上下或左右方向),使它经过点C′,求此时抛物线的解析式.

manfen5.com 满分网
(1)由题意可知B,B′的坐标,可用待定系数法求得一次函数的解析式.由一次函数解析式可得到M,N两点的坐标,代入二次函数即可求得二次函数的解析式; (2)设P点坐标为(x,y),连接OP,PM,由对称的性质可得出OP⊥MN,OE=PE,PM=OM=5,再由勾股定理求出MN的长,由三角形的面积公式得出OE的长,利用两点间的距离公式求出x、y的值,把x的值代入二次函数关系式看是否适合即可; (3)可上下平移,横坐标等于C′的横坐标,左右平移,纵坐标等于C′的纵坐标. 【解析】 (1)由题意得,B(-1,3),B'(3,1), ∴直线BB′的解析式为, 直线BB′与x轴的交点为M(5,0),与y轴的交点N(0,), 设抛物线的解析式为y=a(x-5)(x+1), ∵抛物线过点N, ∴, ∴, ∴抛物线的解析式为=; (2)设P点坐标为(x,y),连接OP,PM,OP交NM于E, ∵O、P关于直线MN对称, ∴OP⊥MN,OE=PE,PM=OM=5, ∵N(0,),M(5,0), ∴MN===,OE===, ∴OP=2OE=2, ∴OP==2①, PM==5②, ①②联立,解得, 把x=2代入二次函数的解析式y=-x2+2x+得,y=, ∴点P不在此二次函数的图象上; (3)若抛物线上下平移经过点C',此时解析式为, 当y=1时,, ∴,=, 若抛物线向左平移经过点C',平移距离为, 此时解析式为=, 若抛物线向右平移经过点C', 此时解析式为.
复制答案
考点分析:
相关试题推荐
如图1,在平面直角坐标系中,AB、CD都垂直于x轴,垂足分别为B、D,AD与BC相交于E点,已知:A(-2,-6),C(1,-3),一抛物线经过A,E,C三点.
(1)求点E的坐标及此抛物线的表达式;
(2)如图2,如果AB位置不变,将DC向右平移k(k>0)个单位,求△AEC的面积S关于k的函数表达式;
(3)在第(2)问中,是否存在k的值,使AD⊥BC?如果存在,求出k的值;如果不存在,请说明理由.
manfen5.com 满分网
查看答案
如图,四边形ABCD是等腰梯形,其中AD∥BC,AD=2,BC=4,AB=CD=manfen5.com 满分网.点M从点B开始,以每秒2个单位长的速度向点C运动;点N从点D开始,以每秒1个单位长的速度向点A运动,若点M,N同时开始运动,点M与点C不重合,运动时间为t(t>0).过点N作NP垂直于BC,交BC于点P,交AC于点Q,连接MQ.
(1)用含t的代数式表示QP的长;
(2)设△CMQ的面积为S,求出S与t的函数关系式;
(3)求出t为何值时,△CMQ为等腰三角形?

manfen5.com 满分网 查看答案
已知抛物线y=x2+bx+c,经过点A(0,5)和点B(3,2)
(1)求抛物线的解析式:
(2)现有一半径为l,圆心P在抛物线上运动的动圆,问⊙P在运动过程中,是否存在⊙P与坐标轴相切的情况?若存在,请求出圆心P的坐标;若不存在,请说明理由;
(3)若⊙Q的半径为r,点Q在抛物线上,且⊙Q与两坐轴都相切时,求半径r的值.
查看答案
已知抛物线L:y=ax2+bx+c(其中a、b、c都不等于0),它的顶点P的坐标是manfen5.com 满分网,与y轴的交点是M(0,c).我们称以M为顶点,对称轴是y轴且过点P的抛物线为抛物线L的伴随抛物线,直线PM为L的伴随直线.
(1)请直接写出抛物线y=2x2-4x+1的伴随抛物线和伴随直线的解析式:
伴随抛物线的解析式 ______,伴随直线的解析式 ______
(2)若一条抛物线的伴随抛物线和伴随直线分别是y=-x2-3和y=-x-3,则这条抛物线的解析式是 ______
(3)求抛物线L:y=ax2+bx+c(其中a、b、c都不等于0)的伴随抛物线和伴随直线的解析式;
(4)若抛物线L与x轴交于A(x1,0)、B(x2,0)两点,x2>x1>0,它的伴随抛物线与x轴交于C、D两点,且AB=CD.请求出a、b、c应满足的条件.
查看答案
已知点M,N的坐标分别为(0,1),(0,-1),点P是抛物线y=manfen5.com 满分网x2上的一个动点.
(1)求证:以点P为圆心,PM为半径的圆与直线y=-1的相切;
(2)设直线PM与抛物线y=manfen5.com 满分网x2的另一个交点为点Q,连接NP,NQ,求证:∠PNM=∠QNM.
manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.