满分5 > 初中数学试题 >

已知抛物线C1:y=-x2+2mx+n(m,n为常数,且m≠0,n>0)的顶点为...

已知抛物线C1:y=-x2+2mx+n(m,n为常数,且m≠0,n>0)的顶点为A,与y轴交于点C;抛物线C2与抛物线C1关于y轴对称,其顶点为B,连接AC,BC,AB.
(1)请在横线上直接写出抛物线C2的解析式:______
(2)当m=1时,判定△ABC的形状,并说明理由;
(3)抛物线C1上是否存在点P,使得四边形ABCP为菱形?如果存在,请求出m的值;如果不存在,请说明理由.

manfen5.com 满分网
(1)两抛物线关于y轴对称,它们的开口方向和大小都相同(即二次项系数a相同),与y轴的交点也相同(即常数项c相同),不同的只是对称轴方程,可据此求解; (2)由于两个抛物线关于y轴对称,根据轴对称的性质可判断出△ACB是等腰三角形;当m=1时,可过A作C1的对称轴AD,过C作AD的垂线,设垂足为E,利用A、C的坐标,求得AE、CE的长,从而证得∠ACE=45°,进而求出∠ACy=∠BCy=45°,即△ACB是等腰直角三角形; (3)若四边形ABCP是菱形,且P在C1上,那么C、P必关于AD对称,即CP经过E点;若四边形ABCP是菱形,则有:AB=BC,此时△ABC是等边三角形,那么∠ACy=∠BCy=30°,故∠ACE=60°;可仿照(2)的解题方法,表示出A、C的坐标,进而得到AE、CE的长,以∠ACE的正切值作为等量关系即可求得m的值. 【解析】 (1)y=-x2-2mx+n; (2)当m=1时,△ABC为等腰直角三角形, 理由如下:如图: ∵点A与点B关于y轴对称,点C又在y轴上, ∴AC=BC,过点A作抛物线C1的对称轴交x轴于D,过点C作CE⊥AD于E. ∴当m=1时,顶点A的坐标为A(1,1+n), ∴CE=1; 又∵点C的坐标为(0,n), ∴AE=1+n-n=1, ∴AE=CE; 从而∠ECA=45°, ∴∠ACy=45°, 由对称性知∠BCy=∠ACy=45°, ∴△ABC为等腰直角三角形; (3)假设抛物线C1上存在点P,使得四边形ABCP为菱形,则PC=AB=BC. 由(2)知,AC=BC, ∴AB=BC=AC, 从而△ABC为等边三角形. ∴∠ACy=∠BCy=30°. ∵四边形ABCP为菱形,且点P在C1上, ∴点P与点C关于AD对称, ∴PC与AD的交点也为点E, 因此∠ACE=90°-30°=60°. ∵点A,C的坐标分别为A(m,m2+n),C(0,n), ∴AE=m2+n-n=m2,CE=|m|. 在Rt△ACE中,. ∴,∴. 故抛物线C1上存在点P,使得四边形ABCP为菱形,此时.
复制答案
考点分析:
相关试题推荐
已知:直角梯形OABC中,BC∥OA,∠AOC=90°,以AB为直径的圆M交OC于D、E,连接AD、BD、BE.
manfen5.com 满分网
(1)在不添加其他字母和线的前提下,直接写出图1中的两对相似三角形.
____________
(2)直角梯形OABC中,以O为坐标原点,A在x轴正半轴上建立直角坐标系(如图2),若抛物线y=ax2-2ax-3a(a<0)经过点A、B、D,且B为抛物线的顶点.
①写出顶点B的坐标(用a的代数式表示)______
②求抛物线的解析式;
③在x轴下方的抛物线上是否存在这样的点P:过点P做PN⊥x轴于N,使得△PAN与△OAD相似?若存在,求出点P的坐标;若不存在,说明理由.
查看答案
已知抛物线y=-x2+ax+b经过点A(1,0),B(0,-4).
(1)求抛物线的解析式;
(2)求此抛物线与坐标轴的三个交点连接而成的三角形的面积.
查看答案
如图,在平面直角坐标系中,矩形OABC的顶点A(0,3),C(-1,0),将矩形OABC绕原点顺时针旋转90°,得到矩形OA′B′C′.设直线BB′与x轴交于点M、与y轴交于点N,抛物线y=ax2+2x+c的图象经过点C、M、N.解答下列问题:
(1)分别求出直线BB′和抛物线所表示的函数解析式;
(2)将△MON沿直线MN翻折,点O落在点P处,请你判断点P是否在抛物线上,说明理由;
(3)将抛物线进行平移(沿上下或左右方向),使它经过点C′,求此时抛物线的解析式.

manfen5.com 满分网 查看答案
如图1,在平面直角坐标系中,AB、CD都垂直于x轴,垂足分别为B、D,AD与BC相交于E点,已知:A(-2,-6),C(1,-3),一抛物线经过A,E,C三点.
(1)求点E的坐标及此抛物线的表达式;
(2)如图2,如果AB位置不变,将DC向右平移k(k>0)个单位,求△AEC的面积S关于k的函数表达式;
(3)在第(2)问中,是否存在k的值,使AD⊥BC?如果存在,求出k的值;如果不存在,请说明理由.
manfen5.com 满分网
查看答案
如图,四边形ABCD是等腰梯形,其中AD∥BC,AD=2,BC=4,AB=CD=manfen5.com 满分网.点M从点B开始,以每秒2个单位长的速度向点C运动;点N从点D开始,以每秒1个单位长的速度向点A运动,若点M,N同时开始运动,点M与点C不重合,运动时间为t(t>0).过点N作NP垂直于BC,交BC于点P,交AC于点Q,连接MQ.
(1)用含t的代数式表示QP的长;
(2)设△CMQ的面积为S,求出S与t的函数关系式;
(3)求出t为何值时,△CMQ为等腰三角形?

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.