满分5 > 初中数学试题 >

如图,在梯形ABCD中,AD∥BC,AD=6cm,CD=4cm,BC=BD=10...

如图,在梯形ABCD中,AD∥BC,AD=6cm,CD=4cm,BC=BD=10cm,点P由B出发沿BD方向匀速运动,速度为1cm/s;同时,线段EF由DC出发沿DA方向匀速运动,速度为1cm/s,交BD于Q,连接PE.若设运动时间为t(s)(0<t<5).解答下列问题:
(1)当t为何值时,PE∥AB;
(2)设△PEQ的面积为y(cm2),求y与t之间的函数关系式;
(3)是否存在某一时刻t,使S△PEQ=manfen5.com 满分网S△BCD?若存在,求出此时t的值;若不存在,说明理由;
(4)连接PF,在上述运动过程中,五边形PFCDE的面积是否发生变化?说明理由.

manfen5.com 满分网
(1)若要PE∥AB,则应有,故用t表示DE和DP后,代入上式求得t的值; (2)过B作BM⊥CD,交CD于M,过P作PN⊥EF,交EF于N.由题意知,四边形CDEF是平行四边形,可证得△DEQ∽△BCD,得到,求得EQ的值,再由△PNQ∽△BMD,得到,求得PN的值,利用S△PEQ=EQ•PN得到y与t之间的函数关系式; (3)利用S△PEQ=S△BCD建立方程,求得t的值; (4)易得△PDE≌△FBP,故有S五边形PFCDE=S△PDE+S四边形PFCD=S△FBP+S四边形PFCD=S△BCD,即五边形的面积不变. 【解析】 (1)当PE∥AB时, ∴. 而DE=t,DP=10-t, ∴, ∴, ∴当(s),PE∥AB. (2)∵线段EF由DC出发沿DA方向匀速运动, ∴EF平行且等于CD, ∴四边形CDEF是平行四边形. ∴∠DEQ=∠C,∠DQE=∠BDC. ∵BC=BD=10, ∴△DEQ∽△BCD. ∴. . ∴. 过B作BM⊥CD,交CD于M,过P作PN⊥EF,交EF于N, ∵BC=BD,BM⊥CD,CD=4cm, ∴CM=CD=2cm, ∴cm, ∵EF∥CD, ∴∠BQF=∠BDC,∠BFG=∠BCD, 又∵BD=BC, ∴∠BDC=∠BCD, ∴∠BQF=∠BFG, ∵ED∥BC, ∴∠DEQ=∠QFB, 又∵∠EQD=∠BQF, ∴∠DEQ=∠DQE, ∴DE=DQ, ∴ED=DQ=BP=t, ∴PQ=10-2t. 又∵△PNQ∽△BMD, ∴. ∴. ∴. ∴S△PEQ=EQ•PN=××. (3)S△BCD=CD•BM=×4×4=8, 若S△PEQ=S△BCD, 则有-t2+t=×8, 解得t1=1,t2=4. (4)在△PDE和△FBP中, ∵DE=BP=t,PD=BF=10-t,∠PDE=∠FBP, ∴△PDE≌△FBP(SAS). ∴S五边形PFCDE=S△PDE+S四边形PFCD=S△FBP+S四边形PFCD=S△BCD=8. ∴在运动过程中,五边形PFCDE的面积不变.
复制答案
考点分析:
相关试题推荐
已知抛物线C1:y=-x2+2mx+n(m,n为常数,且m≠0,n>0)的顶点为A,与y轴交于点C;抛物线C2与抛物线C1关于y轴对称,其顶点为B,连接AC,BC,AB.
(1)请在横线上直接写出抛物线C2的解析式:______
(2)当m=1时,判定△ABC的形状,并说明理由;
(3)抛物线C1上是否存在点P,使得四边形ABCP为菱形?如果存在,请求出m的值;如果不存在,请说明理由.

manfen5.com 满分网 查看答案
已知:直角梯形OABC中,BC∥OA,∠AOC=90°,以AB为直径的圆M交OC于D、E,连接AD、BD、BE.
manfen5.com 满分网
(1)在不添加其他字母和线的前提下,直接写出图1中的两对相似三角形.
____________
(2)直角梯形OABC中,以O为坐标原点,A在x轴正半轴上建立直角坐标系(如图2),若抛物线y=ax2-2ax-3a(a<0)经过点A、B、D,且B为抛物线的顶点.
①写出顶点B的坐标(用a的代数式表示)______
②求抛物线的解析式;
③在x轴下方的抛物线上是否存在这样的点P:过点P做PN⊥x轴于N,使得△PAN与△OAD相似?若存在,求出点P的坐标;若不存在,说明理由.
查看答案
已知抛物线y=-x2+ax+b经过点A(1,0),B(0,-4).
(1)求抛物线的解析式;
(2)求此抛物线与坐标轴的三个交点连接而成的三角形的面积.
查看答案
如图,在平面直角坐标系中,矩形OABC的顶点A(0,3),C(-1,0),将矩形OABC绕原点顺时针旋转90°,得到矩形OA′B′C′.设直线BB′与x轴交于点M、与y轴交于点N,抛物线y=ax2+2x+c的图象经过点C、M、N.解答下列问题:
(1)分别求出直线BB′和抛物线所表示的函数解析式;
(2)将△MON沿直线MN翻折,点O落在点P处,请你判断点P是否在抛物线上,说明理由;
(3)将抛物线进行平移(沿上下或左右方向),使它经过点C′,求此时抛物线的解析式.

manfen5.com 满分网 查看答案
如图1,在平面直角坐标系中,AB、CD都垂直于x轴,垂足分别为B、D,AD与BC相交于E点,已知:A(-2,-6),C(1,-3),一抛物线经过A,E,C三点.
(1)求点E的坐标及此抛物线的表达式;
(2)如图2,如果AB位置不变,将DC向右平移k(k>0)个单位,求△AEC的面积S关于k的函数表达式;
(3)在第(2)问中,是否存在k的值,使AD⊥BC?如果存在,求出k的值;如果不存在,请说明理由.
manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.