满分5 > 初中数学试题 >

如图,△ABC内接于⊙O,AD⊥BC,OE⊥BC,OE=BC. (1)求∠BAC...

如图,△ABC内接于⊙O,AD⊥BC,OE⊥BC,OE=manfen5.com 满分网BC.
(1)求∠BAC的度数;
(2)将△ACD沿AC折叠为△ACF,将△ABD沿AB折叠为△ABG,延长FC和GB相交于点H;求证:四边形AFHG是正方形;
(3)若BD=6,CD=4,求AD的长.

manfen5.com 满分网
(1)连接OB、OC,由垂径定理知E是BC的中点,而OE=BC,可判定△BOC是直角三角形,则∠BOC=90°,根据同弧所对的圆周角和圆心角的关系即可求得∠BAC的度数; (2)由折叠的性质可得到的条件是:①AG=AD=AF,②∠GAF=∠GAD+∠DAF=2∠BAC=90°,且∠G=∠F=90°;由②可判定四边形AGHF是矩形,联立①的结论可证得四边形AGHF是正方形; (3)设AD=x,由折叠的性质可得:AD=AF=x(即正方形的边长为x),BG=BD=6,CF=CD=4;进而可用x表示出BH、HC的长,即可在Rt△BHC中,由勾股定理求得AD的长. (1)【解析】 连接OB和OC; ∵OE⊥BC,∴BE=CE; ∵OE=BC,∴∠BOC=90°,∴∠BAC=45°;(2分) (2)证明:∵AD⊥BC,∴∠ADB=∠ADC=90°; 由折叠可知,AG=AF=AD,∠AGH=∠AFH=90°, ∠BAG=∠BAD,∠CAF=∠CAD,(3分) ∴∠BAG+∠CAF=∠BAD+∠CAD=∠BAC=45°; ∴∠GAF=∠BAG+∠CAF+∠BAC=90°; ∴四边形AFHG是正方形;(5分) (3)【解析】 由(2)得,∠BHC=90°,GH=HF=AD,GB=BD=6,CF=CD=4; 设AD的长为x,则BH=GH-GB=x-6,CH=HF-CF=x-4.(7分) 在Rt△BCH中,BH2+CH2=BC2,∴(x-6)2+(x-4)2=102; 解得,x1=12,x2=-2(不合题意,舍去); ∴AD=12. (8分)
复制答案
考点分析:
相关试题推荐
如图,⊙O的直径AB垂直弦CD于M,且M是半径OB的中点,CD=8cm,求直径AB的长.

manfen5.com 满分网 查看答案
如图,点P是圆上的一个动点,弦AB=manfen5.com 满分网.PC是∠APB的平分线,∠BAC=30°.
(1)当∠PAC等于多少度时,四边形PACB有最大面积,最大面积是多少?
(2)当∠PAC等于多少度时,四边形PACB是梯形,说明你的理由.

manfen5.com 满分网 查看答案
(1)已知:如图1,在矩形ABCD中,AF=BE.求证:DE=CF;
(2)已知:如图2,⊙O1与坐标轴交于A(1,0)、B(5,0)两点,点O1的纵坐标为manfen5.com 满分网.求⊙O1的半径.

manfen5.com 满分网 查看答案
一座拱型桥,桥下水面宽度AB是20米,拱高CD是4米.若水面上升3米至EF,则水面宽度EF是多少?
(1)若把它看作是抛物线的一部分,在坐标系中(如图1)可设抛物线的表达式为y=ax2+c.请你填空:
a=______,c=______,EF=______米.
(2)若把它看作是圆的一部分,则可构造图形(如图2)计算如下:
设圆的半径是r米,在Rt△OCB中,易知r2=(r-4)2+102,r=14.5
同理,当水面上升3米至EF,在Rt△OGF中可计算出GF=______
查看答案
如图1所示,以点M(-1,O)为圆心的圆与y轴,x轴分别交于点A,B,C,D,直线y=-manfen5.com 满分网x-manfen5.com 满分网与⊙M相切于点H,交x轴于点E,交y轴于点F.
(1)请直接写出OE,⊙M的半径r,CH的长;
(2)如图2所示,弦HQ交x轴于点P,且DP:PH=3:2,求cos∠QHC的值;
(3)如图3所示,点K为线段EC上一动点(不与E,C重合),连接BK交⊙M于点T,弦AT交x轴于点N.是否存在一个常数a,始终满足MN•MK=a,如果存在,请求出a的值;如果不存在,请说明理由.
manfen5.com 满分网manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.