满分5 > 初中数学试题 >

如图,在△ABC中,AB=BC=2,以AB为直径的⊙O分别交BC、AC于点D、E...

manfen5.com 满分网如图,在△ABC中,AB=BC=2,以AB为直径的⊙O分别交BC、AC于点D、E,且点D为BC的中点.
(1)求证:△ABC为等边三角形;
(2)求DE的长;
(3)在线段AB的延长线上是否存在一点P,使△PBD≌△AED?若存在,请求出PB的长;若不存在,请说明理由.
(1)连接AD,利用直径所对的圆周角为直角及垂直平分线的性质得到相等的线段AB=AC,联立已知的AB=BC,即可证得△ABC是等边三角形; (2)连接BE,利用直径所对的圆周角为直角,得到BE⊥AC,然后利用等腰三角形三线合一的性质得出E为AC的中点,继而利用三角形中位线的数量关系求得DE的长度; (3)根据等边三角形的性质,可以证得△PBD和△AED有一组边DE=BD和一对角∠PBD=∠AED对应相等,所以只要再满足这组角的另一夹边对应相等就可以了. (1)证明:连接AD, ∵AB是⊙O的直径, ∴∠ADB=90°. ∵点D是BC的中点, ∴AD是线段BC的垂直平分线, ∴AB=AC, ∵AB=BC, ∴AB=BC=AC, ∴△ABC为等边三角形. (2)【解析】 连接BE. ∵AB是直径, ∴∠AEB=90°, ∴BE⊥AC, ∵△ABC是等边三角形, ∴AE=EC,即E为AC的中点, ∵D是BC的中点,故DE为△ABC的中位线, ∴DE=AB=×2=1. (3)【解析】 存在点P使△PBD≌△AED, 由(1)(2)知,BD=ED, ∵∠BAC=60°,DE∥AB, ∴∠AED=120°, ∵∠ABC=60°, ∴∠PBD=120°, ∴∠PBD=∠AED, 要使△PBD≌△AED; 只需PB=AE=1.
复制答案
考点分析:
相关试题推荐
空投物资用的某种降落伞的轴截面如图所示,△ABG是等边三角形,C、D是以AB为直径的半圆O的两个三等分点,CG、DG分别交AB于点E、F,试判断manfen5.com 满分网点E、F分别位于所在线段的什么位置?并证明你的结论(证明一种情况即可).
查看答案
如图,A、B、C、D是⊙O上的四点,AB=DC,△ABC与△DCB全等吗?为什么?

manfen5.com 满分网 查看答案
如图,A,B,C,D是⊙O上的四个点,点A是manfen5.com 满分网的中点,AD交BC于点E,AE=4,AB=6,求DE的长.

manfen5.com 满分网 查看答案
已知:如图,AB是⊙O的一条弦,点C为manfen5.com 满分网的中点,CD是⊙O的直径,过C点的直线l交AB所在直线于点E,交⊙O于点F.
(1)判定图中∠CEB与∠FDC的数量关系,并写出结论;
(2)将直线l绕C点旋转(与CD不重合),在旋转过程中,E点,F点的位置也随之变化,请你在下面两个备用图中分别画出在不同位置时,使(1)的结论仍然成立的图形,标上相应字母,选其中一个图形给予证明.
manfen5.com 满分网
查看答案
如图,AB为⊙O直径,过弦AC的点C作CF⊥AB于点D,交AE所在直线于点F.
求证:AC2=AE•AF.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.