满分5 > 初中数学试题 >

已知:如图,直径为OA的⊙M与x轴交于点O、A,点B、C把分为三等份,连接MC并...

已知:如图,直径为OA的⊙M与x轴交于点O、A,点B、C把manfen5.com 满分网分为三等份,连接MC并延长交y轴于点D(0,3)
(1)求证:△OMD≌△BAO;
(2)若直线l:y=kx+b把⊙M的面积分为二等份,求证:manfen5.com 满分网k+b=0.

manfen5.com 满分网
题目涉及的范围包括三角形,圆形和直线等知识,范围比较广,要细心分析,认真领会题目意思. 证明:(1)连接BM,∵B、C把三等分,∴∠1=∠5=60°,1分 又∵OM=BM,∴∠2=∠5=30°,2分 又∵OA为⊙M直径,∴∠ABO=90°,∴AB=OA=OM,∠3=60°,3分 ∴∠1=∠3,∠DOM=∠ABO=90°,4分 在△OMD和△BAO中,5分 ∴△OMD≌△BAO(ASA).6分 (2)若直线l把⊙M的面积分为二等份, 则直线l必过圆心M,7分 ∵D(0,3),∠1=60°, ∴, ∴,8分 把M(,0)代入y=kx+b得:k+b=0.
复制答案
考点分析:
相关试题推荐
(1)如图1,圆内接△ABC中,AB=BC=CA,OD、OE为⊙O的半径,OD⊥BC于点F,OE⊥AC于点G,
求证:阴影部分四边形OFCG的面积是△ABC的面积的manfen5.com 满分网
(2)如图2,若∠DOE保持120°角度不变,
求证:当∠DOE绕着O点旋转时,由两条半径和△ABC的两条边围成的图形(图中阴影部分)面积始终是△ABC的面积的manfen5.com 满分网

manfen5.com 满分网 查看答案
如图,已知⊙O的半径为1,PQ是⊙O的直径,n个相同的正三角形沿PQ排成一列,所有正三角形都关于PQ对称,其中第一个△A1B1C1的顶点A1与点P重合,第二个△A2B2C2的顶点A2是B1C1与PQ的交点,…,最后一个△AnBnCn的顶点Bn、Cn在圆上.
manfen5.com 满分网manfen5.com 满分网
(1)如图1,当n=1时,求正三角形的边长a1
(2)如图2,当n=2时,求正三角形的边长a2
(3)如题图,求正三角形的边长an(用含n的代数式表示)
查看答案
已知:如图,在△ABC中,点D是∠BAC的角平分线上一点,BD⊥AD于点D,过点D作DE∥AC交AB于点E.求证:点E是过A,B,D三点的圆的圆心.

manfen5.com 满分网 查看答案
如图,在▱ABCD中,∠BAD为钝角,且AE⊥BC,AF⊥CD.
(1)求证:A、E、C、F四点共圆;
(2)设线段BD与(1)中的圆交于M、N.求证:BM=ND.

manfen5.com 满分网 查看答案
如图①,在直角坐标系中,点A的坐标为(1,0),以OA为边在第一象限内作正方形OABC,点D是x轴正半轴上一动点(OD>1),连接BD,以BD为边在第一象限内作正方形DBFE,设M为正方形DBFE的中心,直线MA交y轴于点N.如果定义:只有一组对角是直角的四边形叫做损矩形.
(1)试找出图1中的一个损矩形;
(2)试说明(1)中找出的损矩形的四个顶点一定在同一个圆上;
(3)随着点D位置的变化,点N的位置是否会发生变化?若没有发生变化,求出点N的坐标;若发生变化,请说明理由;
(4)在图②中,过点M作MG⊥y轴于点G,连接DN,若四边形DMGN为损矩形,求D点坐标.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.