满分5 > 初中数学试题 >

在平面直角坐标系中,抛物线经过O(0,0)、A(4,0)、E(3,)三点. (1...

在平面直角坐标系中,抛物线经过O(0,0)、A(4,0)、E(3,manfen5.com 满分网)三点.
(1)求此抛物线的解析式;
(2)以OA的中点M为圆心,OM长为半径作⊙M,在(1)中的抛物线上是否存在这样的点P,过点P作⊙M的切线l,且l与x轴的夹角为30°?若存在,请求出此时点P的坐标;若不存在,请说明理由.(注意:本题中的结果可保留根号).manfen5.com 满分网
(1)设抛物线的一般式,将O、A、B三点坐标代入解析式,解方程组即可; (2)存在这样的点P,设满足条件的切线l与x轴交于点B,与⊙M相切于点C,连接MC,过C作CD⊥x轴于D,在Rt△BMC中,CM为半径,∠CBM=30°,可求BM,从而可求B点坐标,在Rt△CDM中,∠CMD=60°,CM为半径,可求CD、DM,OD=OM--DM,可确定C点坐标,根据“两点法”求直线BC解析式,联立直线解析式、抛物线解析式,解方程组可求P点坐标,根据图形的对称性求另外两点坐标. 【解析】 (1)设抛物线的解析式为:y=ax2+bx+c(a≠0) 由题意得:(1分) 解得:(2分) ∴抛物线的解析式为:(3分) (2)存在(4分) 抛物线的顶点坐标是,作抛物线和⊙M(如图), 设满足条件的切线l与x轴交于点B,与⊙M相切于点C 连接MC,过C作CD⊥x轴于D ∵MC=OM=2,∠CBM=30°,CM⊥BC ∴∠BCM=90°,∠BMC=60°,BM=2CM=4, ∴B(-2,0) 在Rt△CDM中,∠DCM=∠CDM-∠CMD=30° ∴DM=1,CD==∴C(1,) 设切线l的解析式为:y=kx+b(k≠0),点B、C在l上, 可得: 解得: ∴切线BC的解析式为: ∵点P为抛物线与切线的交点, 由, 解得:,, ∴点P的坐标为:,; ∵抛物线的对称轴是直线x=2 此抛物线、⊙M都与直线x=2成轴对称图形 于是作切线l关于直线x=2的对称直线l′(如图) 得到B、C关于直线x=2的对称点B1、C1 直线l′满足题中要求,由对称性, 得到P1、P2关于直线x=2的对称点:,即为所求的点; ∴这样的点P共有4个:,,,.
复制答案
考点分析:
相关试题推荐
如图,已知直角坐标系中一条圆弧经过正方形网格的格点A、B、C.
(1)用直尺画出该圆弧所在圆的圆心M的位置;
(2)若A点的坐标为(0,4),D点的坐标为(7,0),试验证点D是否在经过点A、B、C的抛物线上;
(3)在(2)的条件下,求证:直线CD是⊙M的切线.

manfen5.com 满分网 查看答案
已知:半径为1的⊙O1与x轴交于A、B两点,圆心O1的坐标为(2,0),二次函数y=-x2+bx+c的图象经过A、B两点,其顶点为F.
(1)求b、c的值及二次函数顶点F的坐标;
(2)写出将二次函数y=-x2+bx+c的图象向下平移1个单位再向左平移2个单位的图象的函数表达式;
(3)经过原点O的直线l与⊙O相切,求直线l的函数表达式.

manfen5.com 满分网 查看答案
已知一次函数y=x+2的图象分别交x轴,y轴于A、B两点,⊙O1过以OB为边长的正方形OBCD的四个顶点,两动点P、Q同时从点A出发在四边形ABCD上运动,其中动点P以每秒manfen5.com 满分网个单位长度的速度沿A→B→A运动后停止;动点Q以每秒2个单位长度的速度沿A→O→D→C→B运动,AO1交y轴于E点,P、Q运动的时间为t(秒).
(1)直接写出E点的坐标和S△ABE的值;
(2)试探究点P、Q从开始运动到停止,直线PQ与⊙O1有哪几种位置关系,并指出对应的运动时间t的范围;
(3)当Q点运动在折线AD→DC上时,是否存在某一时刻t使得S△APQ:S△ABE=3:4?若存在,请确定t的值和直线PQ所对应的函数解析式;若不存在,说明理由.

manfen5.com 满分网 查看答案
已知:如图,直线manfen5.com 满分网交x轴于O1,交y轴于O2,⊙O2与x轴相切于O点,交直线O1O2于P点,以O1为圆心,O1P为半径的圆交x轴于A、B两点,PB交⊙O2于点F,⊙O1的弦BE=BO,EF的延长线交AB于D,连接PA、PO.
(1)求证:∠APO=∠BPO;
(2)求证:EF是⊙O2的切线;
(3)EO1的延长线交⊙O1于C点,若G为BC上一动点,以O1G为直径作⊙O3交O1C于点M,交O1B于N.下列结论:①O1M•O1N为定值;②线段MN的长度不变.只有一个是正确的,请你判断出正确的结论,并证明正确的结论,以及求出它的值.
manfen5.com 满分网
查看答案
如图,已知平面直角坐标系中三个点A(-8,0)、B(2,0)、Cmanfen5.com 满分网,O为坐标原点.以AB为直径的⊙M与y轴的负半轴交于点D.
(1)求直线CD的解析式;
(2)求证:直线CD是⊙M的切线;
(3)过点A作AE⊥CD,垂足为E,且AE与⊙M相交于点F,求一个一元二次方程,使它的两个根分别是AE和AF.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.