满分5 > 初中数学试题 >

如图,二次函数y=ax2+bx+c(a>0)与坐标轴交于点A、B、C且OA=1,...

如图,二次函数y=ax2+bx+c(a>0)与坐标轴交于点A、B、C且OA=1,OB=OC=3.
(1)求此二次函数的解析式;
(2)写出顶点坐标和对称轴方程;
(3)点M、N在y=ax2+bx+c的图象上(点N在点M的右边),且MN∥x轴,求以MN为直径且与x轴相切的圆的半径.

manfen5.com 满分网
(1)由OA=1,OB=OC=3,可知三点的坐标分别为A(-1,0),B(3,0),C(0,-3),用待定系数法求得解析式; (2)把解析式变换成顶点式,写出坐标; (3)由(2)知,对称轴为x=1,当MN在x轴下方时,设圆半径为r,则点N的坐标为(1+r,-r),代入解析式求得r的值,同理求得当MN在x轴上方时r的值. 【解析】 (1)依题意A(-1,0),B(3,0),C(0,-3)分别代入y=ax2+bx+c, 解方程组得所求解析式为y=x2-2x-3; (2)y=x2-2x-3=(x-1)2-4, ∴顶点坐标(1,-4),对称轴x=1; (3)设圆半径为r,当MN在x轴下方时,N点坐标为(1+r,-r), 把N点代入y=x2-2x-3得, 同理可得另一种情形, ∴圆的半径为或.
复制答案
考点分析:
相关试题推荐
如图,等边△ABC边长为4,E是边BC上动点,EH⊥AC于H,过E作EF∥AC,交线段AB于点F,在线段AC上取点P,使PE=EB.设EC=x(0<x≤2).
(1)请直接写出图中与线段EF相等的两条线段(不再另外添加辅助线);
(2)Q是线段AC上的动点,当四边形EFPQ是平行四边形时,求平行四边形EFPQ的面积(用含x的代数式表示);
(3)当(2)中的平行四边形EFPQ面积最大值时,以E为圆心,r为半径作圆,根据⊙E与此时平行四边形EFPQ四条边交点的总个数,求相应的r的取值范围.

manfen5.com 满分网 查看答案
在平面直角坐标系中,已知A(-4,0),B(1,0),且以AB为直径的圆交y轴的正半轴于点C(0,2),过点C作圆的切线交x轴于点D.
(1)求过A,B,C三点的抛物线的解析式;
(2)求点D的坐标;
(3)设平行于x轴的直线交抛物线于E,F两点,问:是否存在以线段EF为直径的圆,恰好与x轴相切?若存在,求出该圆的半径;若不存在,请说明理由.

manfen5.com 满分网 查看答案
在平面直角坐标系中,抛物线经过O(0,0)、A(4,0)、E(3,manfen5.com 满分网)三点.
(1)求此抛物线的解析式;
(2)以OA的中点M为圆心,OM长为半径作⊙M,在(1)中的抛物线上是否存在这样的点P,过点P作⊙M的切线l,且l与x轴的夹角为30°?若存在,请求出此时点P的坐标;若不存在,请说明理由.(注意:本题中的结果可保留根号).manfen5.com 满分网
查看答案
如图,已知直角坐标系中一条圆弧经过正方形网格的格点A、B、C.
(1)用直尺画出该圆弧所在圆的圆心M的位置;
(2)若A点的坐标为(0,4),D点的坐标为(7,0),试验证点D是否在经过点A、B、C的抛物线上;
(3)在(2)的条件下,求证:直线CD是⊙M的切线.

manfen5.com 满分网 查看答案
已知:半径为1的⊙O1与x轴交于A、B两点,圆心O1的坐标为(2,0),二次函数y=-x2+bx+c的图象经过A、B两点,其顶点为F.
(1)求b、c的值及二次函数顶点F的坐标;
(2)写出将二次函数y=-x2+bx+c的图象向下平移1个单位再向左平移2个单位的图象的函数表达式;
(3)经过原点O的直线l与⊙O相切,求直线l的函数表达式.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.