满分5 > 初中数学试题 >

如图,已知四边形ABCD内接于⊙O,A是的中点,AE⊥AC于A,与⊙O及CB的延...

如图,已知四边形ABCD内接于⊙O,A是manfen5.com 满分网的中点,AE⊥AC于A,与⊙O及CB的延长线分别交于点F、E,且manfen5.com 满分网,EM切⊙O于M.
(1)求证:△ADC∽△EBA;
(2)求证:AC2=manfen5.com 满分网BC•CE;
(3)如果AB=2,EM=3,求cot∠CAD的值.

manfen5.com 满分网
(1)欲证(1)△ADC∽△EBA,只要证明两个角对应相等就可以.可以转化为证明就可以; (2)过A作AH⊥BC于H,根据射影定理就可以得到结论. (3)A是中点,则AC=AB=2,根据切割线定理,以及△CAD∽△ABE就可以求的结论. (1)证明:∵四边形ABCD内接于⊙O, ∴∠CDA=∠ABE. ∵, ∴∠DCA=∠BAE. ∴△ADC∽△EBA; (2)证明:过A作AH⊥BC于H(如图), ∵A是中点, ∴AB=AC, 又∵AH⊥BC于H, ∴HC=HB=BC, ∵∠CAE=90°, ∵AH⊥BC, ∴∠AHC=∠AHB=90°, ∴△ACH∽△AEC, ∴=,即AC2=HC•CE, 又∵BC=2CH, ∴AC2=CH•CE=BC•CE; (3)【解析】 ∵A是中点,AB=2, ∴AC=AB=2. ∵EM是⊙O的切线, ∴EB•EC=EM2① ∵AC2=BC•CE,BC•CE=8 ② 联立①②得:EC(EB+BC)=17. ∴EC2=17. ∵EC2=AC2+AE2,∴AE=, ∵△CAD∽△ABE, ∴∠CAD=∠AEC. ∴cot∠CAD=cot∠AEC=.
复制答案
考点分析:
相关试题推荐
如图,等腰△OAB中,OA=OB,以点O为圆心作圆与底边AB相切于点C.
求证:AC=BC.

manfen5.com 满分网 查看答案
如图,在直角坐标系中,点A的坐标为(-2manfen5.com 满分网,0),⊙P刚好与x轴相切于点A,⊙P交y的正半轴于点B,点C,且BC=4.
(1)求半径PA的长;
(2)求证:四边形CAPB为菱形;
(3)有一开口向下的抛物线过O,A两点,当它的顶点不在直线AB的上方时,求函数表达式的二次项系数a的取值范围.

manfen5.com 满分网 查看答案
如图,点C是半圆O的半径OB上的动点,作PC⊥AB于C.点D是半圆上位于PC左侧的点,连接BD交线段PC于E,且PD=PE.
(1)求证:PD是⊙O的切线;
(2)若⊙O的半径为manfen5.com 满分网,PC=manfen5.com 满分网,设OC=x,PD2=y.
①求y关于x的函数关系式;
②当manfen5.com 满分网时,求tanB的值.

manfen5.com 满分网 查看答案
如图,将含30°角的直角三角板ABC(∠B=30°)绕其直角顶点A逆时针旋转α解(0°<α<90°),得到Rt△ADE,AD与BC相交于点M,过点M作MN∥DE交AE于点N,连接NC.设BC=4,BM=x,△MNC的面积为S△MNC,△ABC的面积为S△ABC
(1)求证:△MNC是直角三角形;
(2)试求用x表示S△MNC的函数关系式,并写出x的取值范围;
(3)以点N为圆心,NC为半径作⊙N,
①当直线AD与⊙N相切时,试探求S△MNC与S△ABC之间的关系;
②当S△MNC=manfen5.com 满分网S△ABC时,试判断直线AD与⊙N的位置关系,并说明理由.

manfen5.com 满分网 查看答案
如图,二次函数y=ax2+bx+c(a>0)与坐标轴交于点A、B、C且OA=1,OB=OC=3.
(1)求此二次函数的解析式;
(2)写出顶点坐标和对称轴方程;
(3)点M、N在y=ax2+bx+c的图象上(点N在点M的右边),且MN∥x轴,求以MN为直径且与x轴相切的圆的半径.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.