满分5 > 初中数学试题 >

如图(1),四边形ABCD是⊙O的内接四边形,点C是的中点,过点C的切线与AD的...

如图(1),四边形ABCD是⊙O的内接四边形,点C是manfen5.com 满分网的中点,过点C的切线与AD的延长线交于点E.
(1)求证:AB•DE=CD•BC;
(2)如果四边形ABCD仍是⊙O的内接四边形,点C在劣弧manfen5.com 满分网上运动,点E在AD的延长线上运动,切线CE变为割线EFC,请问要使(1)的结论成立还需要具备什么条件?请你在图(2)上画出示意图,标明有关字母,不要求进行证明.

manfen5.com 满分网
(1)可通过构建相似三角形来求证,连接AC证三角形ABC和CDE相似,CE是圆的切线,根据弦切角定理可得出∠DCE=∠CAD,根据C是弧BD的中点,得出∠BAC=∠DAC,那么∠DCE=∠BAC,根据ABCD内接于圆O,那么外角∠CDE=∠B,那么就构成了两三角形相似的条件,得出相似后,即可得出所要求证的比例关系; (2)要使(1)的条件成立,就必须保证△ABC和△CDE相似,因此就要保证∠DCF=∠BAC,那么需要满足的条件就应该是(也可以写成角相等,线段相等或平行等样式). (1)证明:连接AC. ∵C是的中点, ∴,∠BAC=∠DAC ∵CE切⊙O于点C,点C在⊙O上 ∴∠DCE=∠DAC=∠BAC, ∵四边形ABCD是⊙O的内接四边形, ∴∠EDC=∠B, ∴△EDC∽△CBA, ∴, ∴AB•DE=CD•BC; (2)【解析】 如图,条件为:(或DF=BC或∠DAF=∠BAC 或∠DCF=∠BAC或FC∥BD等) 如图,(图中虚线为可能画的线).
复制答案
考点分析:
相关试题推荐
如图①,AB是⊙O的直径,AC是弦,直线EF和⊙O相切于点C,AD⊥EF,垂足为D.
(1)求证:∠DAC=∠BAC;
(2)若把直线EF向上平行移动,如图②,EF交⊙O于G、C两点,若题中的其它条件不变,这时与∠DAC相等的角是哪一个?为什么?
manfen5.com 满分网
查看答案
如图,在锐角△ABC中,BA=BC,点O是边AB上的一个动点(不与点A、B重合),以O为圆心,OA为半径的圆交边AC于点M,过点M作⊙O的切线MN交BC于点N.
(1)当OA=OB时,求证:MN⊥BC;
(2)分别判断OA<OB、OA>OB时,上述结论是否成立,请选择一种情况,说明理由.

manfen5.com 满分网 查看答案
如图,AB为⊙O直径,BC切⊙O于B,CO交⊙O交于D,AD的延长线交BC于E,若∠C=25°,求∠A的度数.

manfen5.com 满分网 查看答案
如图,已知AB是⊙O的直径,AB=2,∠BAC=30°,点C在⊙O上,过点C与⊙O相切的直线交AB的延长线于点D,求线段BD的长.

manfen5.com 满分网 查看答案
如图,CE、CB是半圆O的切线,切点分别为D、B,AB为半圆O的直径.CE与BA的延长线交于点E,连接OC、OD.
(1)求证:△OBC≌△ODC;
(2)若已知DE=a,AE=b,BC=c,请你思考后,从a,b,c三个已知数中选用适当的数,设计出计算半圆O的半径r的一种方案:
①方案中你选用的已知数是______
②写出求解过程(结果用字母表示).

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.