满分5 > 初中数学试题 >

如图,已知射线DE与x轴和y轴分别交于点D(3,0)和点E(0,4).动点C从点...

如图,已知射线DE与x轴和y轴分别交于点D(3,0)和点E(0,4).动点C从点M(5,0)出发,以1个单位长度/秒的速度沿x轴向左作匀速运动,与此同时,动点P从点D出发,也以1个单位长度/秒的速度沿射线DE的方向作匀速运动.设运动时间为t秒.
(1)请用含t的代数式分别表示出点C与点P的坐标;
(2)以点C为圆心、manfen5.com 满分网t个单位长度为半径的⊙C与x轴交于A、B两点(点A在点B的左侧),连接PA、PB.
①当⊙C与射线DE有公共点时,求t的取值范围;
②当△PAB为等腰三角形时,求t的值.

manfen5.com 满分网
(1)根据题意,得t秒时,点C的横坐标为5-t,纵坐标为0;过点P作PQ⊥x轴于点Q,根据相似三角形对应边成比例列出比例式求出PQ、DQ再求出OQ,从而得解; (2)①当点A到达点D时,所用的时间是t的最小值,此时DC=OC-OD=5-t-3=t,得到t≥; 当圆C在点D左侧且与ED相切时,为t的最大值. 如图,易得Rt△CDF∽Rt△EDO,有,求解得到t的最大值. ②当△PAB为等腰三角形时,有三种情况:PA=AB,PA=PB,PB=AB.根据勾股定理,求得每种情况的t的值. 【解析】 (1)如图,t秒时,有PD=t,DE=5,OE=4,OD=3, 则PQ:EO=DQ:OD=PD:ED, ∴PQ=t,DQ=t. ∴C(5-t,0),. (2) ①当⊙C的圆心C由点M(5,0)向左运动,使点A到点D并随⊙C继续向左运动时, 有,即. 当点C在点D左侧时,过点C作CF⊥射线DE,垂足为F, 则由∠CDF=∠EDO, 得△CDF∽△EDO, 则, 解得. 由t,即,解得. ∴当⊙C与射线DE有公共点时,t的取值范围为. ②当PA=AB时,过P作PQ⊥x轴,垂足为Q. 有PA2=PQ2+AQ2=. ∴, 即9t2-72t+80=0, 解得. 当PA=PB时,有PC⊥AB,此时P,C横坐标相等, ∴, 解得t3=5; 当PB=AB时,有 , ∴, 即7t2-8t-80=0, 解得(不合题意,舍去). ∴当△PAB是等腰三角形时,,或t=4,或t=5,或. 又∵C是从M点向左运动的,故,或t=4,或t=5或.
复制答案
考点分析:
相关试题推荐
如图,在直角梯形ABCD中,AB∥CD,∠B=90°,AB=AD,∠BAD的平分线交BC于E,连接DE.
(1)说明点D在△ABE的外接圆上;
(2)若∠AED=∠CED,试判断直线CD与△ABE外接圆的位置关系,并说明理由.

manfen5.com 满分网 查看答案
如图,在Rt△ABC中,∠C=90°,AC=3,BC=4.动点O在边CA上移动,且⊙O的半径为2.
(1)若圆心O与点C重合,则⊙O与直线AB有怎样的位置关系?
(2)当OC等于多少时,⊙O与直线AB相切?

manfen5.com 满分网 查看答案
如图,在平面直角坐标系中,以A(5,1)为圆心,以2个单位长度为半径的⊙A交x轴于点B、C,解答下列问题:
(1)将⊙A向左平移______个单位长度与y轴首次相切,得到⊙A′,此时点A′的坐标为______,阴影部分的面积S=______
(2)求BC的长.

manfen5.com 满分网 查看答案
如图,已知⊙O是△ABC的外接圆,AB是⊙O的直径,D是AB延长线上一点,AE⊥DC交DC的延长线于点E,且AC平分∠EAB.
(1)求证:DE是⊙O的切线;
(2)若AB=6,AE=manfen5.com 满分网,求BD和BC的长.

manfen5.com 满分网 查看答案
如图1,在直角坐标系中,点A的坐标为(1,0),以OA为边在第四象限内作等边△AOB,点C为x轴的正半轴上一动点(OC>1),连接BC,以BC为边在第四象限内作等边△CBD,直线DA交y轴于点E.
(1)试问△OBC与△ABD全等吗?并证明你的结论;
(2)随着点C位置的变化,点E的位置是否会发生变化?若没有变化,求出点E的坐标;若有变化,请说明理由;
(3)如图2,以OC为直径作圆,与直线DE分别交于点F、G,设AC=m,AF=n,用含n的代数式表示m.manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.