在坐标平面内,半径为R的⊙O与x轴交于点D(1,0)、E(5,0),与y轴的正半轴相切于点B.点A、B关于x轴对称,点P(a,0)在x的正半轴上运动,作直线AP,作EH⊥AP于H.
(1)求圆心C的坐标及半径R的值;
(2)△POA和△PHE随点P的运动而变化,若它们全等,求a的值;若给定a=6,试判定直线AP与⊙C的位置关系(要求说明理由).
考点分析:
相关试题推荐
如图,P为正比例函数y=
x图象上的一个动点,⊙P的半径为3,设点P的坐标为(x,y).
(1)求⊙P与直线x=2相切时点P的坐标.
(2)请直接写出⊙P与直线x=2相交、相离时x的取值范围.
查看答案
已知△ABC内接于以AB为直径的⊙O,过点C作⊙O的切线交BA的延长线于点D,且DA:AB=1:2.
(1)求∠CDB的度数;
(2)在切线DC上截取CE=CD,连接EB,判断直线EB与⊙O的位置关系,并证明;
(3)利用图中已标明的字母,连接线段,找出至少5对相似三角形(不包含全等,不需要证明).(多写者给附加分,附加分不超过3分,计入总分,但总分不超过120分.)
查看答案
设边长为2a的正方形的中心A在直线l上,它的一组对边垂直于直线l,半径为r的⊙O的圆心O在直线l上运动,点A、O间距离为d.
(1)如图①,当r<a时,根据d与a、r之间关系,将⊙O与正方形的公共点个数填入下表:
d、a、r之间关系 | 公共点的个数 |
d>a+r | |
d=a+r | |
a≤d<a+r | |
d=a-r | |
d<a-r | |
所以,当r<a时,⊙O与正方形的公共点的个数可能有______个;
(2)如图②,当r=a时,根据d与a、r之间关系,将⊙O与正方形的公共点个数填入下表:
d、a、r之间关系 | 公共点的个数 |
d>a+r | |
d=a+r | |
a≤d<a+r | |
d<a | |
所以,当r=a时,⊙O与正方形的公共点个数可能有______个;
(3)如图③,当⊙O与正方形有5个公共点时,试说明r=
a;
(4)就r>a的情形,请你仿照“当…时,⊙O与正方形的公共点个数可能有______个”的形式,至少给出一个关于“⊙O与正方形的公共点个数”的正确结论.
(注:第(4)小题若多给出一个正确结论,则可多得2分,但本大题得分总和不得超过12分).
查看答案
如图,在直角坐标系中,点O′的坐标为(-2,0),⊙O′与x轴相交于原点O和点A,又B,C两点的坐标分别为(0,b),(1,0).
(1)当b=3时,求经过B,C两点的直线的解析式;
(2)当B点在y轴上运动时,直线BC与⊙O′有哪几种位置关系?并求每种位置关系时b的取值范围.
查看答案
如图,已知O为原点,点A的坐标为(4,3),⊙A的半径为2.过A作直线l平行于x轴,交y轴于点B,点P在直线l上运动.
(1)当点P在⊙A上时,请你直接写出它的坐标;
(2)设点P的横坐标为12,试判断直线OP与⊙A的位置关系,并说明理由.
查看答案