满分5 > 初中数学试题 >

如图所示,在△ABC中,以AB为直径的⊙O交BC于点P,PD⊥AC于点D,且PD...

如图所示,在△ABC中,以AB为直径的⊙O交BC于点P,PD⊥AC于点D,且PD与⊙O相切.
(1)求证:AB=AC;
(2)若BC=6,AB=4,求CD的值.

manfen5.com 满分网
(1)连接OP,根据切线的性质可知OP⊥PD,可求出OP∥AC,根据三角形中位线定理可知,OP=AC,由于OP=AB即可解答. (2)连接AP,可得出Rt△CDP∽Rt△CPA,进而根据相似三角形的性质解答即可. (1)证明:连接OP, ∵PD与⊙O相切, ∴OP⊥PD, ∵AC⊥PD, ∴OP∥AC, ∵OP=0A=OB=AB, ∴OP是△ABC的中位线,∴OP=AC, ∴AC=AB. (2)【解析】 连接AP, ∵AB为直径, ∴AP⊥BC; 由(1)知,AC=AB=4, ∴PC=PB; 又∵BC=6, ∴PC=3; 在Rt△CDP与Rt△CPA中,∠C=∠C, ∴Rt△CDP∽Rt△CPA, ∴=, ∵BC=6,AB=4, ∴=, CD=.
复制答案
考点分析:
相关试题推荐
如图所示,AB是⊙O的直径,AC切⊙O于点A,且AC=AB,CO交⊙O于点P,CO的延长线交⊙O于点F,BP的延长线交AC于点E,连接AP、AF.
求证:
(1)AF∥BE;
(2)△ACP∽△FCA;
(3)CP=AE.

manfen5.com 满分网 查看答案
如图,AB是⊙O的直径,C为圆周上一点,∠ABC=30°,⊙O过点B的切线与CO的延长线交于点D.
求证:(1)∠CAB=∠BOD;
(2)△ABC≌△ODB.

manfen5.com 满分网 查看答案
如图,⊙O是△ABC的外接圆,∠A=30°,AB是⊙O的直径,过点C作⊙O的切线,交AB延长线于D,CD=3manfen5.com 满分网cm,
(1)求⊙O的直径;
(2)若动点M以3cm/s的速度从点A出发沿AB方向运动,同时点N以1.5cm/s的速度从B点出发沿BC方向运动.设运动的时间为t(0≤t≤2),连接MN,当t为何值时△BMN为直角三角形?并求此时该三角形的面积?

manfen5.com 满分网 查看答案
如图,在△ABC中,∠C=90°,AC+BC=8,点O是斜边AB上一点,以O为圆心的⊙O分别与AC,BC相切于点D,E.
(1)当AC=2时,求⊙O的半径;
(2)设AC=x,⊙O的半径为y,求y与x的函数关系式.

manfen5.com 满分网 查看答案
如图,在矩形ABCD中,AD=8,点E是AB边上的一点,AE=2manfen5.com 满分网.过D,E两点作直线PQ,与BC边所在的直线MN相交于点F.
(1)求tan∠ADE的值;
(2)点G是线段AD上的一个动点,GH⊥DE,垂足为H.设DG为x,四边形AEHG的面积为y,试写出y与x之间的函数关系式;
(3)如果AE=2EB,点O是直线MN上的一个动点,以O为圆心作圆,使⊙O与直线PQ相切,同时又与矩形ABCD的某一边相切.问满足条件的⊙O有几个?并求出其中一个圆的半径.
manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.