满分5 > 初中数学试题 >

如图,在Rt△ABC中∠ABC=90°,斜边AC的垂直平分线交BC与D点,交AC...

如图,在Rt△ABC中∠ABC=90°,斜边AC的垂直平分线交BC与D点,交AC于E点,连接BE.
(1)若BE是△DEC的外接圆⊙O的切线,求∠C的大小;
(2)当AB=1,BC=2时,求△DEC外接圆的半径.

manfen5.com 满分网
(1)由于DE垂直平分AC,可得两个条件:①DE⊥AC,②E是AC的中点;由①得:∠DEC是直角,则DC是⊙O的直径,若连接OE,则OE⊥BE,且∠BOE=2∠C;欲求∠C的度数,只需求出∠EBO、∠C的比例关系即可;由②知:在Rt△ABC中,E是斜边AC的中点,则BE=EC,即∠EBO=∠C,因此在Rt△EBO中,∠EBO和∠EOB互余,即3∠C=90°,由此得解. (2)根据AB、BC的长,利用勾股定理可求出斜边AC的长,由(1)知:E是AC的中点,即可得到EC的值;易证得△DEC∽△ABC,根据所得比例线段,即可求得直径CD的长,由此得解. 【解析】 (1)∵DE垂直平分AC, ∴∠DEC=90°, ∴DC为△DEC外接圆的直径, ∴DC的中点O即为圆心; 连接OE,又知BE是圆O的切线, ∴∠EBO+∠BOE=90°; 在Rt△ABC中,E是斜边AC的中点, ∴BE=EC, ∴∠EBC=∠C; 又∵OE=OC, ∴∠BOE=2∠C,∠EBC+∠BOE=90°, ∴∠C+2∠C=90°, ∴∠C=30°. (2)在Rt△ABC中,AC=, ∴EC=AC=, ∵∠ABC=∠DEC=90°,∠C=∠C, ∴△ABC∽△DEC, ∴, ∴DC=, ∴△DEC外接圆半径为.
复制答案
考点分析:
相关试题推荐
如图,AB是⊙O的直径,点C在BA的延长线上,直线CD与⊙O相切于点D,弦DF⊥AB于点E,线段CD=10,连接BD.
(1)求证:∠CDE=2∠B;
(2)若BD:AB=manfen5.com 满分网:2,求⊙O的半径及DF的长.

manfen5.com 满分网 查看答案
如图,已知⊙O1与⊙O2都过点A,AO1是⊙O2的切线,⊙O1交O1O2于点B,连接AB并延长交⊙O2于点C,连接O2C.
(1)求证:O2C⊥O1O2
(2)证明:AB•BC=2O2B•BO1
(3)如果AB•BC=12,O2C=4,求AO1的长.

manfen5.com 满分网 查看答案
如图,在等腰梯形ABCD中,AD∥BC.O是CD边的中点,以O为圆心,OC长为半径作圆,交BC边于点E.过E作EH⊥AB,垂足为H.已知⊙O与AB边相切,切点为F.
(1)求证:OE∥AB;
(2)求证:EH=manfen5.com 满分网AB;
(3)若manfen5.com 满分网,求manfen5.com 满分网的值.

manfen5.com 满分网 查看答案
如图,在▱ABCD中,∠DAB=60°,AB=15cm.已知⊙O的半径等于3cm,AB,AD分别与⊙O相切于点E,F.⊙O在▱ABCD内沿AB方向滚动,与BC边相切时运动停止.试求⊙O滚过的路程?

manfen5.com 满分网 查看答案
如图,BD是⊙O的直径,OA⊥OB,M是劣弧manfen5.com 满分网上一点,过点M作⊙O的切线MP交OA的延长线于P点,MD与OA交于N点.
(1)求证:PM=PN;
(2)若BD=4,PA=manfen5.com 满分网AO,过点B作BC∥MP交⊙O于C点,求BC的长.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.