满分5 > 初中数学试题 >

如图,⊙O是△ABC的外接圆,FH是⊙O的切线,切点为F,FH∥BC,连接AF交...

如图,⊙O是△ABC的外接圆,FH是⊙O的切线,切点为F,FH∥BC,连接AF交BC于E,∠ABC的平分线BD交AF于D,连接BF.
(1)证明:AF平分∠BAC;
(2)证明:BF=FD;
(3)若EF=4,DE=3,求AD的长.

manfen5.com 满分网
(1)连接OF,通过切线的性质证OF⊥FH,进而由FH∥BC,得OF⊥BC,即可由垂径定理得到F是弧BC的中点,根据圆周角定理可得∠BAF=∠CAF,由此得证; (2)求BF=FD,可证两边的对角相等;易知∠DBF=∠DBC+∠FBC,∠BDF=∠BAD+∠ABD;观察上述两个式子,∠ABD、∠CBD是被角平分线平分∠ABC所得的两个等角,而∠CBF和∠DAB所对的是等弧,由此可证得∠DBF=∠BDF,即可得证; (3)由EF、DE的长可得出DF的长,进而可由(2)的结论得到BF的长;然后证△FBE∽△FAB,根据相似三角形得到的成比例线段,可求出AF的长,即可由AD=AF-DF求出AD的长. (1)证明:连接OF ∵FH是⊙O的切线 ∴OF⊥FH(1分) ∵FH∥BC, ∴OF垂直平分BC(2分) ∴ ∴AF平分∠BAC(3分) (2)证明:由(1)及题设条件可知 ∠1=∠2,∠4=∠3,∠5=∠2(4分) ∴∠1+∠4=∠2+∠3 ∴∠1+∠4=∠5+∠3(5分) ∵∠1+∠4=∠BDF,∠5+∠3=∠FBD, ∴∠BDF=∠FBD, ∴BF=FD(6分) (3)【解析】 在△BFE和△AFB中 ∵∠5=∠2=∠1,∠AFB=∠AFB, ∴△BFE∽△AFB(7分) ∴═,(8分) ∴BF2=FE•FA ∴(9分),EF=4,BF=FD=EF+DE=4+3=7, ∴ ∴AD=AF-DF=AF-(DE+EF)==(10分)
复制答案
考点分析:
相关试题推荐
(1)如图1,PA,PB分别与圆O相切于点A,B.求证:PA=PB;
(2)如图2,过圆O外一点P的两条直线分别与圆O相交于点A、B和C、D.则当______时,PB=PD.(不添加字母符号和辅助线,不需证明,只需填上符合题意的一个条件)
manfen5.com 满分网
查看答案
如图,Rt△ABC中,∠ABC=90°,以AB为直径的⊙O交AC于点D,过点D的切线交BC于E.
(1)求证:DE=manfen5.com 满分网BC;
(2)若tanC=manfen5.com 满分网,DE=2,求AD的长.

manfen5.com 满分网 查看答案
在△ABC中,分别以AB、BC为直径的⊙O1、⊙O2,交于另一点D.
(1)证明:交点D必在AC上;
(2)如图甲,当⊙O1与⊙O2半径之比为4:3,且DO2与⊙O1相切时,判断△ABC的形状,并求tan∠O2DB的值;
(3)如图乙,当⊙O1经过点O2,AB、DO2的延长线交于E,且BE=BD时,求∠A的度数.

manfen5.com 满分网 查看答案
如图所示,已知AB是⊙O的直径,直线L与⊙O相切于点C,manfen5.com 满分网,CD交AB于E,BF⊥直线L,垂足为F,BF交⊙O于C.
(1)图中哪条线段与AE相等?试证明你的结论;
(2)若manfen5.com 满分网,AE=4,求AB的值.

manfen5.com 满分网 查看答案
如图,AB为⊙O的直径,弦CD⊥AB,垂足为点M,AE切⊙O于点A,交BC的延长线于点E,连接AC.
(1)若∠B=30°,AB=2,求CD的长;
(2)求证:AE2=EB•EC.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.