满分5 > 初中数学试题 >

已知:如图,⊙A与y轴交于C、D两点,圆心A的坐标为(1,0),⊙A的半径为,过...

已知:如图,⊙A与y轴交于C、D两点,圆心A的坐标为(1,0),⊙A的半径为manfen5.com 满分网,过点C作⊙A的切线交x轴于点B(-4,0).
manfen5.com 满分网
(1)求切线BC的解析式;
(2)若点P是第一象限内⊙A上的一点,过点P作⊙A的切线与直线BC相交于点G,且∠CGP=120°,求点G的坐标;
(3)向左移动⊙A(圆心A始终保持在x轴上),与直线BC交于E、F,在移动过程中是否存在点A,使△AEF是直角三角形?若存在,求出点A的坐标;若不存在,请说明理由.
(1)连接AC,由于BC与⊙A相切,则AC⊥BC,在Rt△ABC中,OC⊥AB,根据射影定理即可求得OC的长,从而得到C点的坐标,进而用待定系数法求出直线BC的解析式. (2)可设出G点的坐标(设横坐标,利用直线BC的解析式表示纵坐标),连接AP、AG;由于GC、GP都是⊙A的切线,那么∠AGC=∠ABP=60°,在Rt△AGC中,AC的长易求得,根据∠AGC的度数,即可求得AG的长;过G作GH⊥x轴于H,在Rt△GAH中,可根据G点的坐标表示出AH、GH的长,进而由勾股定理求得G点的坐标. (3)若⊙A与直线交于点E、F,则AE=AF,如果△AEF是直角三角形,则∠EAF必为直角,那么△EAF是以A为顶点的等腰直角三角形,因此可分作两种情况考虑: ①点A在B点右侧时,可过A作直线BC的垂线,设垂足为M,在(2)题已经求得了⊙A的半径,即可得到AM的长,易证得△BAM∽△BCO,通过相似三角形所得比例线段即可求得AB的长,进而可得到OA的长,从而得出A点的坐标; ②点A在B点左侧时,方法同①. 【解析】 (1)如图1所示,连接AC,则AC=, 在Rt△AOC中,AC=,OA=1,则OC=2, ∴点C的坐标为(0,2); 设切线BC的解析式为y=kx+b,它过点C(0,2),B(-4,0), 则有,解之得; ∴.(4分) (2)如图1所示,设点G的坐标为(a,c),过点G作GH⊥x轴,垂足为H点, 则OH=a,GH=c=a+2,(5分) 连接AP,AG; 因为AC=AP,AG=AG,所以Rt△ACG≌Rt△APG(HL), 所以∠AGC=×120°=60°, 在Rt△ACG中,∠AGC=60°,AC=, ∴sin60°=,∴AG=;(6分) 在Rt△AGH中,AH=OH-OA=a-1,GH=a+2, ∵AH2+GH2=AG2, ∴(a-1)2+=, 解之得:a1=,a2=-(舍去);(7分) ∴点G的坐标为(,+2).(8分) (3)如图2所示,在移动过程中,存在点A,使△AEF为直角三角形.(9分) 要使△AEF为直角三角形,∵AE=AF, ∴∠AEF=∠AFE≠90°,∴只能是∠EAF=90°; 当圆心A在点B的右侧时,过点A作AM⊥BC,垂足为点M, 在Rt△AEF中,AE=AF=, 则EF=,AM=EF=; 在Rt△OBC中,OC=2,OB=4,则BC=2, ∵∠BOC=∠BMA=90°,∠OBC=∠OBM, ∴△BOC∽△BMA, ∴=, ∴AB=, ∴OA=OB-AB=4-, ∴点A的坐标为(-4+,0);(11分) 当圆心A在点B的左侧时,设圆心为A′,过点A′作A′M′⊥BC于点M′,可得: △A′M′B≌△AMB,A′B=AB=, ∴OA′=OB+A′B=4+, ∴点A′的坐标为(-4-,0); 综上所述,点A的坐标为(-4+,0)或(-4-,0).(13分)
复制答案
考点分析:
相关试题推荐
如图,PA与⊙O相切于A点,弦AB⊥OP,垂足为C,OP与⊙O相交于D点,已知OA=2,OP=4.
(1)求∠POA的度数;
(2)计算弦AB的长.

manfen5.com 满分网 查看答案
如图,⊙O是△ABC的外接圆,FH是⊙O的切线,切点为F,FH∥BC,连接AF交BC于E,∠ABC的平分线BD交AF于D,连接BF.
(1)证明:AF平分∠BAC;
(2)证明:BF=FD;
(3)若EF=4,DE=3,求AD的长.

manfen5.com 满分网 查看答案
(1)如图1,PA,PB分别与圆O相切于点A,B.求证:PA=PB;
(2)如图2,过圆O外一点P的两条直线分别与圆O相交于点A、B和C、D.则当______时,PB=PD.(不添加字母符号和辅助线,不需证明,只需填上符合题意的一个条件)
manfen5.com 满分网
查看答案
如图,Rt△ABC中,∠ABC=90°,以AB为直径的⊙O交AC于点D,过点D的切线交BC于E.
(1)求证:DE=manfen5.com 满分网BC;
(2)若tanC=manfen5.com 满分网,DE=2,求AD的长.

manfen5.com 满分网 查看答案
在△ABC中,分别以AB、BC为直径的⊙O1、⊙O2,交于另一点D.
(1)证明:交点D必在AC上;
(2)如图甲,当⊙O1与⊙O2半径之比为4:3,且DO2与⊙O1相切时,判断△ABC的形状,并求tan∠O2DB的值;
(3)如图乙,当⊙O1经过点O2,AB、DO2的延长线交于E,且BE=BD时,求∠A的度数.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.