满分5 > 初中数学试题 >

如图,已知AB是⊙O直径,AC是⊙O弦,点D是的中点,弦DE⊥AB,垂足为F,D...

如图,已知AB是⊙O直径,AC是⊙O弦,点D是manfen5.com 满分网的中点,弦DE⊥AB,垂足为F,DE交AC于点G.
(1)若过点E作⊙O的切线ME,交AC的延长线于点M(请补完整图形),试问:ME=MG是否成立?若成立,请证明;若不成立,请说明理由;
(2)在满足第(2)问的条件下,已知AF=3,FB=manfen5.com 满分网,求AG与GM的比.

manfen5.com 满分网
(1)连接OE,并延长EO交⊙O于N,连接DN;由于ME是⊙O的切线,则∠MEG=∠N,而∠MGE=∠AGF,易证得∠AGF=∠B,即∠MGE=∠B,若证ME=MG,关键就是证得∠N=∠B;可从题干入手:点D是弧ABC的中点,则弧AD=弧DBC=弧AE,所以弧DBE=弧AEC,即AC=DE,由此可证得∠N=∠B,即可得到∠MGE=∠MEG,根据等角对等边即可得证. (2)根据相交弦定理可求得DF、EF的长,即可得到DE、AC的长,易证得△AFG∽△ACB,根据所得比例线段即可求得AG、GC的长,再由(1)证得ME=MG,可用MG分别表示出MA、MC的长,进而根据切割线定理求出MG的长,有了AG、MG的值,那么它们的比例关系就不难求出. 【解析】 (1)ME=MG成立,理由如下: 如图,连接EO,并延长交⊙O于N,连接BC; ∵AB是⊙O的直径,且AB⊥DE, ∴, ∵点D是的中点, ∴, ∴, ∴,即AC=DE,∠N=∠B; ∵ME是⊙O的切线, ∴∠MEG=∠N=∠B, 又∵∠B=90°-∠GAF=∠AGF=∠MGE, ∴∠MEG=∠MGE,故ME=MG. (2)由相交弦定理得:DF2=AF•FB=3×=4,即DF=2; 故DE=AC=2DF=4; ∵∠FAG=∠CAB,∠AFG=∠ACB=90°, ∴△AFG∽△ACB, ∴,即, 解得AG=,GC=AC-AG=; 设ME=MG=x,则MC=x-,MA=x+, 由切割线定理得:ME2=MC•MA,即x2=(x-)(x+), 解得MG=x=; ∴AG:MG=:=10:3,即AG与GM的比为.
复制答案
考点分析:
相关试题推荐
已知:AB是⊙O的弦,D是manfen5.com 满分网的中点,过B作AB的垂线交AD的延长线于C.
(1)求证:AD=DC;
(2)过D作⊙O的切线交BC于E,若DE=EC,求sinC.

manfen5.com 满分网 查看答案
已知:如图,AB与⊙O相切于点C,OA=OB,⊙O的直径为4,AB=8.
(1)求OB的长;
(2)求sinA的值.

manfen5.com 满分网 查看答案
已知:如图,⊙A与y轴交于C、D两点,圆心A的坐标为(1,0),⊙A的半径为manfen5.com 满分网,过点C作⊙A的切线交x轴于点B(-4,0).
manfen5.com 满分网
(1)求切线BC的解析式;
(2)若点P是第一象限内⊙A上的一点,过点P作⊙A的切线与直线BC相交于点G,且∠CGP=120°,求点G的坐标;
(3)向左移动⊙A(圆心A始终保持在x轴上),与直线BC交于E、F,在移动过程中是否存在点A,使△AEF是直角三角形?若存在,求出点A的坐标;若不存在,请说明理由.
查看答案
如图,PA与⊙O相切于A点,弦AB⊥OP,垂足为C,OP与⊙O相交于D点,已知OA=2,OP=4.
(1)求∠POA的度数;
(2)计算弦AB的长.

manfen5.com 满分网 查看答案
如图,⊙O是△ABC的外接圆,FH是⊙O的切线,切点为F,FH∥BC,连接AF交BC于E,∠ABC的平分线BD交AF于D,连接BF.
(1)证明:AF平分∠BAC;
(2)证明:BF=FD;
(3)若EF=4,DE=3,求AD的长.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.