如图,⊙O的直径AB=2,AM和BN是它的两条切线,DE切⊙O于E,交AM于D,交BN于C.设AD=x,BC=y.
(1)求证:AM∥BN;
(2)求y关于x的关系式;
(3)求四边形ABCD的面积S,并证明:S≥2.
考点分析:
相关试题推荐
如图1,已知O是锐角∠XAY的边AX上的动点,以点O为圆心、R为半径的圆与射线AY切于点B,交射线OX于点C,连接BC,作CD⊥BC,交AY于点D.
(1)求证:△ABC∽△ACD;
(2)若P是AY上一点,AP=4,且sinA=
,
①如图2,当点D与点P重合时,求R的值;
②当点D与点P不重合时,试求PD的长(用R表示).
查看答案
如图,已知AB是⊙O直径,AC是⊙O弦,点D是
的中点,弦DE⊥AB,垂足为F,DE交AC于点G.
(1)若过点E作⊙O的切线ME,交AC的延长线于点M(请补完整图形),试问:ME=MG是否成立?若成立,请证明;若不成立,请说明理由;
(2)在满足第(2)问的条件下,已知AF=3,FB=
,求AG与GM的比.
查看答案
已知:AB是⊙O的弦,D是
的中点,过B作AB的垂线交AD的延长线于C.
(1)求证:AD=DC;
(2)过D作⊙O的切线交BC于E,若DE=EC,求sinC.
查看答案
已知:如图,AB与⊙O相切于点C,OA=OB,⊙O的直径为4,AB=8.
(1)求OB的长;
(2)求sinA的值.
查看答案
已知:如图,⊙A与y轴交于C、D两点,圆心A的坐标为(1,0),⊙A的半径为
,过点C作⊙A的切线交x轴于点B(-4,0).
(1)求切线BC的解析式;
(2)若点P是第一象限内⊙A上的一点,过点P作⊙A的切线与直线BC相交于点G,且∠CGP=120°,求点G的坐标;
(3)向左移动⊙A(圆心A始终保持在x轴上),与直线BC交于E、F,在移动过程中是否存在点A,使△AEF是直角三角形?若存在,求出点A的坐标;若不存在,请说明理由.
查看答案