如图,在Rt△ABC中,斜边BC=12,∠C=30°,D为BC的中点,△ABD的外接圆⊙O与AC交于F点,过A作⊙O的切线AE交DF的延长线于E点.
(1)求证:AE⊥DE;
(2)计算:AC•AF的值.
考点分析:
相关试题推荐
如图,AB,BC分别是⊙O的直径和弦,点D为
上一点,弦DE交⊙O于点E,交AB于点F,交BC于点G,过点C的切线交ED的延长线于H,且HC=HG,连接BH,交⊙O于点M,连接MD,ME.
求证:
(1)DE⊥AB;
(2)∠HMD=∠MHE+∠MEH.
查看答案
已知:如图1,把矩形纸片ABCD折叠,使得顶点A与边DC上的动点P重合(P不与点D,C重合),MN为折痕,点M,N分别在边BC,AD上,连接AP,MP,AM,AP与MN相交于点F.⊙O过点M,C,P.
(1)请你在图1中作出⊙O(不写作法,保留作图痕迹);
(2)
与
是否相等?请你说明理由;
(3)随着点P的运动,若⊙O与AM相切于点M时,⊙O又与AD相切于点H.设AB为4,请你通过计算,画出这时的图形.(图2,3供参考)
查看答案
如图,⊙O的直径AB=2,AM和BN是它的两条切线,DE切⊙O于E,交AM于D,交BN于C.设AD=x,BC=y.
(1)求证:AM∥BN;
(2)求y关于x的关系式;
(3)求四边形ABCD的面积S,并证明:S≥2.
查看答案
如图1,已知O是锐角∠XAY的边AX上的动点,以点O为圆心、R为半径的圆与射线AY切于点B,交射线OX于点C,连接BC,作CD⊥BC,交AY于点D.
(1)求证:△ABC∽△ACD;
(2)若P是AY上一点,AP=4,且sinA=
,
①如图2,当点D与点P重合时,求R的值;
②当点D与点P不重合时,试求PD的长(用R表示).
查看答案
如图,已知AB是⊙O直径,AC是⊙O弦,点D是
的中点,弦DE⊥AB,垂足为F,DE交AC于点G.
(1)若过点E作⊙O的切线ME,交AC的延长线于点M(请补完整图形),试问:ME=MG是否成立?若成立,请证明;若不成立,请说明理由;
(2)在满足第(2)问的条件下,已知AF=3,FB=
,求AG与GM的比.
查看答案