满分5 > 初中数学试题 >

如图,在△ABC中,∠C=90°,AC=3,BC=4.0为BC边上一点,以0为圆...

如图,在△ABC中,∠C=90°,AC=3,BC=4.0为BC边上一点,以0为圆心,OB为半径作半圆与BC边和AB边分别交于点D、点E,连接DE.
(1)当BD=3时,求线段DE的长;
(2)过点E作半圆O的切线,当切线与AC边相交时,设交点为F.求证:△FAE是等腰三角形.

manfen5.com 满分网
(1)由DB为直径可以得到∠DEB=∠C=90°,由此可以证明Rt△DBE∽Rt△ABC有,把AC,BD,AB的值即可求得DE的值; (2)由弦切角定理可得,∠B=∠FED,再由等角的余角相等知,∠A=∠FEA,故AF=EF. (1)【解析】 ∵∠C=90°,AC=3,BC=4, ∴AB=5, ∵DB为直径, ∴∠DEB=∠C=90°, 又∵∠B=∠B, ∴△DBE∽△ABC, ∴, 即, ∴DE=; (2)证法一:连接OE, ∵EF为半圆O的切线, ∴∠DEO+∠DEF=90°, ∴∠AEF=∠DEO, ∵△DBE∽△ABC, ∴∠A=∠EDB, 又∵∠EDO=∠DEO, ∴∠AEF=∠A, ∴△FAE是等腰三角形; 证法二:连接OE ∵EF为切线, ∴∠AEF+∠OEB=90°, ∵∠C=90°, ∴∠A+∠B=90°, ∵OE=OB, ∴∠OEB=∠B, ∴∠AEF=∠A, ∴△FAE是等腰三角形.
复制答案
考点分析:
相关试题推荐
如图,在Rt△ABC中,斜边BC=12,∠C=30°,D为BC的中点,△ABD的外接圆⊙O与AC交于F点,过A作⊙O的切线AE交DF的延长线于E点.
(1)求证:AE⊥DE;
(2)计算:AC•AF的值.

manfen5.com 满分网 查看答案
如图,AB,BC分别是⊙O的直径和弦,点D为manfen5.com 满分网上一点,弦DE交⊙O于点E,交AB于点F,交BC于点G,过点C的切线交ED的延长线于H,且HC=HG,连接BH,交⊙O于点M,连接MD,ME.
求证:
(1)DE⊥AB;
(2)∠HMD=∠MHE+∠MEH.

manfen5.com 满分网 查看答案
已知:如图1,把矩形纸片ABCD折叠,使得顶点A与边DC上的动点P重合(P不与点D,C重合),MN为折痕,点M,N分别在边BC,AD上,连接AP,MP,AM,AP与MN相交于点F.⊙O过点M,C,P.
(1)请你在图1中作出⊙O(不写作法,保留作图痕迹);
(2)manfen5.com 满分网manfen5.com 满分网是否相等?请你说明理由;
(3)随着点P的运动,若⊙O与AM相切于点M时,⊙O又与AD相切于点H.设AB为4,请你通过计算,画出这时的图形.(图2,3供参考)
manfen5.com 满分网
查看答案
如图,⊙O的直径AB=2,AM和BN是它的两条切线,DE切⊙O于E,交AM于D,交BN于C.设AD=x,BC=y.
(1)求证:AM∥BN;
(2)求y关于x的关系式;
(3)求四边形ABCD的面积S,并证明:S≥2.

manfen5.com 满分网 查看答案
如图1,已知O是锐角∠XAY的边AX上的动点,以点O为圆心、R为半径的圆与射线AY切于点B,交射线OX于点C,连接BC,作CD⊥BC,交AY于点D.
(1)求证:△ABC∽△ACD;
(2)若P是AY上一点,AP=4,且sinA=manfen5.com 满分网
①如图2,当点D与点P重合时,求R的值;
②当点D与点P不重合时,试求PD的长(用R表示).

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.