满分5 > 初中数学试题 >

如图,AB是⊙O的直径,∠BAC=60°,P是OB上一点,过P作AB的垂线与AC...

如图,AB是⊙O的直径,∠BAC=60°,P是OB上一点,过P作AB的垂线与AC的延长线交于点Q,过点C的切线CD交PQ于D,连接OC.
(1)求证:△CDQ是等腰三角形;
(2)如果△CDQ≌△COB,求BP:PO的值.

manfen5.com 满分网
(1)在Rt△ABC中,∠BAC=60°,所以∠ABC=30°,而OB=OC,则有∠OCB=30°,再结合CD时切线,可求∠BCD=60°,那么∠DCQ可求,即可得出△CDQ是等腰三角形; (2)可以假设AB=2,则OB=OA=OC=1,利用勾股定理可得BC=;由于△CDQ≌△COB,那么有CB=CQ,即可求出AQ的长;在直角三角形APQ中,利用30°所对的边等于斜边的一半,又可求AP,而OP=AP-OA,即可求OP,BP也就可求,从而得出BP:PO的值. (1)证明:由已知得∠ACB=90°,∠ABC=30°, ∴∠Q=30°,∠BCO=∠ABC=30°; ∵CD是⊙O的切线,CO是半径, ∴CD⊥CO, ∴∠DCQ=∠BCO=30°, ∴∠DCQ=∠Q, 故△CDQ是等腰三角形. (2)【解析】 设⊙O的半径为1,则AB=2,OC=1,BC=. ∵等腰三角形CDQ与等腰三角形COB全等, ∴CQ=BC=. ∴AQ=AC+CQ=1+, ∴AP=AQ=, ∴BP=AB-AP=, ∴PO=AP-AO=, ∴BP:PO=.
复制答案
考点分析:
相关试题推荐
如图,在等腰△ABC中,AC=AB,以AB为直径的⊙O交BC于点E,过点E作⊙O的切线交AC于点D,交AB的延长线于点P.问:PD与AC是否互相垂直?请说明理由.

manfen5.com 满分网 查看答案
已知:∠MAN=30°,O为边AN上一点,以O为圆心,2为半径作⊙O,交AN于D、E两点,设AD为x.manfen5.com 满分网
(1)如图1,当x为何值时,⊙O与AM相切;
(2)如图2,当x为何值时,⊙O与AM相交于B、C两点,且∠BOC=90度.
查看答案
如图,在Rt△ABC中,∠ACB=90°,以AC为直径的⊙O与AB边交于点D,过点D作⊙O的切线,交BC于点E.
(1)求证:点E是边BC的中点;
(2)若EC=3,BD=manfen5.com 满分网,求⊙O的直径AC的长度;
(3)若以点O,D,E,C为顶点的四边形是正方形,试判断△ABC的形状,并说明理由.

manfen5.com 满分网 查看答案
如图①,②,在平面直角坐标系xOy中,点A的坐标为(4,0),以点A为圆心,4为半径的圆与x轴交于O,B两点,OC为弦,∠AOC=60°,P是x轴上的一动点,连接CP.
(1)求∠OAC的度数;
(2)如图①,当CP与⊙A相切时,求PO的长;
(3)如图②,当点P在直径OB上时,CP的延长线与⊙A相交于点Q,问PO为何值时,△OCQ是等腰三角形?

manfen5.com 满分网 查看答案
manfen5.com 满分网(1)当a=manfen5.com 满分网,b=2时,求manfen5.com 满分网的值;
(2)如图,在⊙O中,AB是直径,∠BOC=120°,PC是⊙O的切线,切点是C,点D在劣弧BC上运动.当∠CPD满足什么条件时,直线PD与直线AB垂直?证明你的结论.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.