如图,四边形ABCD是矩形,点E在BC边上,AE与BD交于点F,∠BAE=∠ADB.
(1)求证:△ABE∽△DAB;
(2)若AB=12,AD=16,以B为圆心的圆与AE相切,求⊙B的半径.
考点分析:
相关试题推荐
如图,在平面直角坐标系xoy中,M是x轴正半轴上一点,⊙M与x轴的正半轴交于A,B两点,A在B的左侧,且OA,OB的长是方程x
2-12x+27=0的两根,ON是⊙M的切线,N为切点,N在第四象限.
(1)求⊙M的直径;
(2)求直线ON的解析式;
(3)在x轴上是否存在一点T,使△OTN是等腰三角形?若存在请在图2中标出T点所在位置,并画出△OTN(要求尺规作图,保留作图痕迹,不写作法,不证明,不求T的坐标);若不存在,请说明理由.
查看答案
如图,AB是⊙O的直径,BC是⊙O的切线,切点为点B,点D是⊙O上的一点,且AD∥OC.求证:AD•BC=OB•BD.
查看答案
在Rt△ACB中,∠C=90°,AC=3,BC=4,D、E分别是边AB、AC的中点.⊙O过点D、E,且与AB相切于点D,求⊙O的半径r.
查看答案
如图,⊙O的直径AB=6cm,P是AB延长线上的一点,过P点作⊙O的切线,切点为C,连接AC.
(1)若∠CPA=30°,求PC的长;
(2)若点P在AB的延长线上运动,∠CPA的平分线交AC于点M,你认为∠CMP的大小是否发生变化?若变化,请说明理由;若不变,求出∠CMP的值.
查看答案
如图,AB,AC是⊙O的两条切线,切点分别为B,C,连接OB,OC,在⊙O外作∠BAD=∠BAO,AD交OB的延长线于点D.
(1)在图中找出一对全等三角形,并进行证明;
(2)如果⊙O的半径为3,sin∠OAC=
,试求切线AC的长;
(3)试说明:△ABD分别是由△ABO,△ACO经过哪种变换得到的.(直接写出结果)
查看答案