如图1,在平面直角坐标系xOy中,点M在x轴的正半轴上,⊙M交x轴于A、B两点,交y轴于C、D两点,且C为
的中点,AE交y轴于G点,若点A的坐标为(-2,0),AE=8.
(1)求点C的坐标;
(2)连接MG、BC,求证:MG∥BC;
(3)如图2,过点D作⊙M的切线,交x轴于点P.动点F在⊙M的圆周上运动时,
的比值是否发生变化?若不变,求出比值;若变化,说明变化规律.
考点分析:
相关试题推荐
如图,在⊙O中,
,点M是
上任意一点,弦CD与弦BM交于点F,连接MC,MD,BD.
(1)请你在图中过点B作⊙O的切线AE,并证明AE∥CD;
(不写作法,作图允许使用三角板)
(2)求证:MC•MD=MF•MB;
(3)如图,若点M是
上任意一点(不与点B,点C重合),弦BM,DC的延长线交于点F,连接MC,MD,BD,则结论MC•MD=MF•MB是否仍然成立?如果成立,请写出证明过程;如果不成立,请说明理由.
查看答案
如图,PA、PB是⊙O的切线,A、B为切点,∠OAB=30度.
(1)求∠APB的度数;
(2)当OA=3时,求AP的长.
查看答案
如图,PA、PB是⊙O的两条切线,切点分别为A、B若直径AC=12cm,∠P=60°,求弦AB的长.
查看答案
如图,在△ABC中,已知∠ABC=90°,AB上一点E,以BE为直径的⊙O恰与AC相切于点D,若AE=2cm,AD=4cm.
(1)求:⊙O的直径BE的长;
(2)计算:△ABC的面积.
查看答案
(人教版)已知:OA、OB是⊙O的半径,且OA⊥OB,P是射线OA上一点(点A除外),直线BP交⊙O于点Q,过Q作⊙O的切线交直线OA于点E.
(1)如图①,若点P在线段OA上,求证:∠OBP+∠AQE=45°;
(2)若点P在线段OA的延长线上,其它条件不变,∠OBP与∠AQE之间是否存在某种确定的等量关系?请你完成图②,并写出结论(不需要证明).
查看答案