满分5 > 初中数学试题 >

已知⊙O过点D(4,3),点H与点D关于y轴对称,过H作⊙O的切线交y轴于点A(...

已知⊙O过点D(4,3),点H与点D关于y轴对称,过H作⊙O的切线交y轴于点A(如图1).
(1)求⊙O半径;
(2)sin∠HAO的值;
(3)如图2,设⊙O与y轴正半轴交点P,点E、F是线段OP上的动点(与P点不重合),连接并延长DE,DF交⊙O于点B,C,直线BC交y轴于点G,若△DEF是以EF为底的等腰三角形,试探索sin∠CGO的大小怎样变化?请说明理由.
manfen5.com 满分网
(1)因为点D在圆上,根据点D的坐标利用勾股定理即可求得OD的长,即半径; (2)连接HD交OA于Q,则HD⊥OA,连接OH,则OH⊥AH,根据同角的余角相等可得到∠HAO=∠OHQ,根据已知可求得sin∠OHQ的值,则sin∠HAO的值也就求得了; (3)设点D关于y轴的对称点为H,连接HD交OP于Q,则HD⊥OP,根据角平分线的性质及垂径定理可得到∠CGO=∠OHQ,则求得sin∠OHQ的值sin∠CGO也就求得了. 【解析】 (1)点D(4,3)在⊙O上, ∴OD2=42+32, ∴OD=5, ∴⊙O的半径r=OD=5;(1分) (2)如图1,连接HD交OA于Q,则HD⊥OA,连接OH,则OH⊥AH, ∴∠HAO=∠OHQ ∴sin∠HAO=sin∠OHQ==; (3)连接DH交y轴于点Q,连接OH交BC于点T(如图2). ∵D与H关于y轴对称, ∴DH⊥EF, 又∵△DEF为等腰三角形, ∴DH平分∠BDC, ∴OT⊥BC, ∴∠CGO=∠QHO, ∴当E、F两点在OP上运动时,sin∠CGO的值不变.
复制答案
考点分析:
相关试题推荐
如图所示,PA、PB是⊙O的切线,A、B为切点,∠APB=80°,点C是⊙O上不同于A、B的任意一点,求∠ACB的度数.

manfen5.com 满分网 查看答案
如图1,在平面直角坐标系xOy中,点M在x轴的正半轴上,⊙M交x轴于A、B两点,交y轴于C、D两点,且C为manfen5.com 满分网的中点,AE交y轴于G点,若点A的坐标为(-2,0),AE=8.
manfen5.com 满分网
(1)求点C的坐标;
(2)连接MG、BC,求证:MG∥BC;
(3)如图2,过点D作⊙M的切线,交x轴于点P.动点F在⊙M的圆周上运动时,manfen5.com 满分网的比值是否发生变化?若不变,求出比值;若变化,说明变化规律.
查看答案
如图,在⊙O中,manfen5.com 满分网,点M是manfen5.com 满分网上任意一点,弦CD与弦BM交于点F,连接MC,MD,BD.
(1)请你在图中过点B作⊙O的切线AE,并证明AE∥CD;
(不写作法,作图允许使用三角板)
(2)求证:MC•MD=MF•MB;
(3)如图,若点M是manfen5.com 满分网上任意一点(不与点B,点C重合),弦BM,DC的延长线交于点F,连接MC,MD,BD,则结论MC•MD=MF•MB是否仍然成立?如果成立,请写出证明过程;如果不成立,请说明理由.

manfen5.com 满分网 查看答案
如图,PA、PB是⊙O的切线,A、B为切点,∠OAB=30度.
(1)求∠APB的度数;
(2)当OA=3时,求AP的长.

manfen5.com 满分网 查看答案
如图,PA、PB是⊙O的两条切线,切点分别为A、B若直径AC=12cm,∠P=60°,求弦AB的长.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.