满分5 > 初中数学试题 >

如图1,等腰直角三角形ABC的腰长是2,∠ABC=90度.以AB为直径作半圆O,...

如图1,等腰直角三角形ABC的腰长是2,∠ABC=90度.以AB为直径作半圆O,M是BC上一动点(不运动至B、C两点),过点M引半圆为O的切线,切点是P,过点A作AB的垂线AN,交切线MP于点N,AC与ON、MN分别交于点E、F.
(1)证明:△MON是直角三角形;
(2)当BM=manfen5.com 满分网时,求manfen5.com 满分网的值(结果不取近似值);
(3)当BM=manfen5.com 满分网时(图2),判断△AEO与△CMF是否相似?如果相似,请证明;如果不相似,请说明理由.
manfen5.com 满分网
(1)连接OP,通过证Rt△MOP≌Rt△MOB和Rt△NOP≌Rt△NOA,说明∠MOP=∠MOB和∠NOP=∠NOA,从而推出∠MON=90°; (2)由(1)的结论,易证得△BOM∽△ANO,得AN:OB=OA:BM,由此可求得AN的长;由于NA、BM同垂直于AB,即AN∥BC,根据平行线分线段成比例定理,即可求得CF:AF的值. (3)当BM=时,Rt△OBM中,易求得∠OMB=60°;根据切线长定理知:∠OMP=60°;因此∠CMF=60°;由(2)的相似三角形知∠AOE=∠OMB=60°;由此可证得∠AOE=∠CMF;又知△ABC为等腰直角三角形,即∠C=∠BAC=45°,由此可证得△AEO与△CMF. (1)证明:连接OP; ∵MB和MP是圆的切线,∴MP=MB; 又∵OP=OB,OM=OM, ∴Rt△MOP≌Rt△MOB; ∴∠POM=∠BOM,同理∠AON=∠PON; ∵∠POM+∠BOM+∠AON+∠PON=180°, ∴2(∠NOP+∠POM)=180°即∠NOP+∠POM=90°; ∴△NOM是直角三角形. (2)【解析】 ∵△ABC是等腰直角三角形,AB=BC=2, ∴AO=OB=1,CM=BC-BM=2-; ∵∠MOB+∠AON=∠AON+∠ANO=90° ∴∠BOM=∠ANO; ∴Rt△OBM∽Rt△NAO, ∴OB:AN=BM:AO,得AN=; ∵AN⊥AB,CB⊥AB, ∴AN∥BC; ∴CF:AF=CM:AN=(2-):=2-3; (3)【解析】 ∵BM=,OB=1, ∴tan∠MOB=MB:OB=,即∠MOB=30°; ∴∠FMC=∠OMB=60°; ∴∠CMF=180°-2∠OMB=60°,∠EOA=180°-∠NOM-∠MOB=60°; 又∵∠C=∠OAE=45° ∴△AEO∽△CMF.
复制答案
考点分析:
相关试题推荐
如图(1),AB是⊙O的直径,射线AT⊥AB,点P是射线AT上的一个动点(P与A不重合),PC与⊙O相切于C,过C作CE⊥AB于E,连接BC并延长BC交AT于点D,连接PB交CE于F.
(1)请你写出PA、PD之间的关系式,并说明理由;
(2)请你找出图中有哪些三角形的面积被PB分成两等分,并加以证明;
(3)设过A、C、D三点的圆的半径是R,当CF=manfen5.com 满分网R时,求∠APC的度数,并在图(2)中作出点P.(要求尺规作图,不写作法,但要保留作图痕迹)
manfen5.com 满分网
查看答案
已知:如图,直线EF与⊙O相切于点C,AB是⊙O的直径,且BC=3,Ac=4.
(1)求半径OC的长;
(2)在切线EF上找一点M,使得以B、M、C为顶点的三角形与△ACO相似.

manfen5.com 满分网 查看答案
如图,PA,PB是⊙O的两条切线,A,B分别是切点,点C是manfen5.com 满分网上任意一点,连接OA,OB,CA,CB,∠P=70°,求∠ACB的度数.

manfen5.com 满分网 查看答案
已知AB是半圆O的直径,点C在BA的延长线上运动(点C与点A不重合),以OC为直径的半圆M与半圆O交于点D,∠DCB的平分线与半圆M交于点E.
manfen5.com 满分网
(1)求证:CD是半圆O的切线(图1);
(2)作EF⊥AB于点F(图2),猜想EF与已有的哪条线段的一半相等,并加以证明;
(3)在上述条件下,过点E作CB的平行线交CD于点N,当NA与半圆O相切时(图3),求∠EOC的正切值.
查看答案
如图,在平面直角坐标系中,以坐标原点O为圆心,2为半径画⊙O,P是⊙O上一动点,且P在第一象限内,过点P作⊙O的切线与x轴相交于点A,与y轴相交于点B.
(1)点P在运动时,线段AB的长度也在发生变化,请写出线段AB长度的最小值,并说明理由;
(2)在⊙O上是否存在一点Q,使得以Q,O,A,P为顶点的四边形是平行四边形?若存在,请求出Q点的坐标;若不存在,请说明理由.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.