如图,AB是⊙O的直径,P是AB的延长线上的一点,PC切⊙O于点C,⊙O的半径为3,∠PCB=30度.
(1)求∠CBA的度数;(2)求PA的长.
考点分析:
相关试题推荐
已知:如图,AB是⊙O的直径,P是AB上的一点(与A、B不重合),QP⊥AB,垂足为P,直线QA交⊙O于C点,过C点作⊙O的切线交直线QP于点D.则△CDQ是等腰三角形.
对上述命题证明如下:
证明:连接OC
∵OA=OC
∴∠A=∠1
∵CD切O于C点
∴∠OCD=90°
∴∠1+∠2=90°
∴∠A+∠2=90°
在Rt△QPA中,∠QPA=90°
∴∠A+∠Q=90°
∴∠2=∠Q
∴DQ=DC
即CDQ是等腰三角形.
问题:对上述命题,当点P在BA的延长线上时,其他条件不变,如图所示,结论“△CDQ是等腰三角形”还成立吗?若成立,请给予证明;若不成立,请说明理由.
查看答案
如图,AB是圆O的弦,直线DE切圆O于点C,AC=BC,
求证:DE∥AB.
查看答案
已知:如图,AB是⊙O的直径,点P为BA延长线上一点,PC为⊙O的切线,C为切点,BD⊥PC,垂足为D,交⊙O于E,连接AC、BC、EC.
(1)求证:BC
2=BD•BA;
(2)若AC=6,DE=4,求PC的长.
查看答案
已知AC切⊙O于A,CB顺次交⊙O于D、B点,AC=8,BD=12,连接AD、AB.
(1)证明:△CAD∽△CBA;
(2)求线段DC的长.
查看答案
如图1,AB是⊙O的直径,直线l交⊙O于C
1、C
2,AD⊥l,垂足为D.
(1)求证:AC
1•AC
2=AB•AD.
(2)若将直线l向上平移(如图2),交⊙O于C
1、C
2,使弦C
1C
2与直径AB相交(交点不与A、B重合),其他条件不变,请你猜想,AC
1、AC
2、AB、AD之间的关系,并说明理由.
(3)若将直线l平移到与⊙O相切时,切点为C,其他条件不变,请你在图3上画出变化后的图形,标好相应的字母并猜想AC、AB、AD的关系是什么?(只写出关系,不加以说明)
查看答案