满分5 > 初中数学试题 >

已知:在Rt△ABC中,∠ABC=90°,D是AC的中点,⊙O经过A、D、B三点...

已知:在Rt△ABC中,∠ABC=90°,D是AC的中点,⊙O经过A、D、B三点,CB的延长线交⊙O于点E(如图1).
在满足上述条件的情况下,当∠CAB的大小变化时,图形也随着改变(如图2),在这个变化过程中,有些线段总保持着相等的关系.
(1)观察上述图形,连接图2中已标明字母的某两点,得到一条新线段与线段CE相等,请说明理由;
(2)在图2中,过点E作⊙O的切线,交AC的延长线于点F.
①若CF=CD,求sin∠CAB的值;
②若manfen5.com 满分网=n(n>0),试用含n的代数式表示sin∠CAB(直接写出结果).

manfen5.com 满分网
(1)连接AE,由图不难看出OD是三角形ABC的中线,那么OD=CE,又因为OD是半径,AE是直径,因此AE=CE; (2)若CD=CF,那么AD=CD=CF,由图不难得出Rt△ADE∽Rt△EDF,那么就可用AD,DF表示出DE,然后根据直角三角形CDE中,CE2=CD2+DE2,这样就能表示出CE了,那么∠CED的正弦函数也就求出来了,∠CAB的正弦值也就有了. 【解析】 (1)连接AE, 求证:AE=CE. 证明:如图,连接OD, ∵∠ABC=90°,CB的延长线交⊙O于点E, ∴∠ABE=90° ∴AE是⊙O的直径, ∵D是AC的中点,O是AE的中点, ∴OD=CE ∵OD=AE ∴AE=CE. (2)①根据题意画出图形,如图,连接DE, ∵AE是⊙O的直径,EF是⊙O的切线, ∴∠ADE=∠AEF=90°, ∴Rt△ADE∽Rt△EDF, ∴. 设AD=k(k>0),则DF=2k, ∴=, ∴DE=k. 在Rt△CDE中, ∵CE2=CD2+DE2=k2+(k)2=3k2, ∴CE=, ∵∠ABC=∠EDC=90°,∠ACB=∠DCE, ∴∠CAB=∠DEC, sin∠CAB=sin∠DEC==. ②sin∠CAB=(n>0).
复制答案
考点分析:
相关试题推荐
如图,AB是⊙O的直径,P是AB的延长线上的一点,PC切⊙O于点C,⊙O的半径为3,∠PCB=30度.
(1)求∠CBA的度数;(2)求PA的长.

manfen5.com 满分网 查看答案
已知:如图,AB是⊙O的直径,P是AB上的一点(与A、B不重合),QP⊥AB,垂足为P,直线QA交⊙O于C点,过C点作⊙O的切线交直线QP于点D.则△CDQ是等腰三角形.
对上述命题证明如下:
证明:连接OC
∵OA=OC
∴∠A=∠1
∵CD切O于C点
∴∠OCD=90°
∴∠1+∠2=90°
∴∠A+∠2=90°
在Rt△QPA中,∠QPA=90°
∴∠A+∠Q=90°
∴∠2=∠Q
∴DQ=DC
即CDQ是等腰三角形.
问题:对上述命题,当点P在BA的延长线上时,其他条件不变,如图所示,结论“△CDQ是等腰三角形”还成立吗?若成立,请给予证明;若不成立,请说明理由.

manfen5.com 满分网 查看答案
如图,AB是圆O的弦,直线DE切圆O于点C,AC=BC,
求证:DE∥AB.

manfen5.com 满分网 查看答案
已知:如图,AB是⊙O的直径,点P为BA延长线上一点,PC为⊙O的切线,C为切点,BD⊥PC,垂足为D,交⊙O于E,连接AC、BC、EC.
(1)求证:BC2=BD•BA;
(2)若AC=6,DE=4,求PC的长.

manfen5.com 满分网 查看答案
已知AC切⊙O于A,CB顺次交⊙O于D、B点,AC=8,BD=12,连接AD、AB.
(1)证明:△CAD∽△CBA;
(2)求线段DC的长.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.