满分5 > 初中数学试题 >

如图,点O在∠APB的平分线上,⊙O与PA相切于点C. (1)求证:直线PB与⊙...

如图,点O在∠APB的平分线上,⊙O与PA相切于点C.
(1)求证:直线PB与⊙O相切;
(2)PO的延长线与⊙O交于点E.若⊙O的半径为3,PC=4.求弦CE的长.

manfen5.com 满分网
(1)连接OC,作OD⊥PB于D点.证明OD=OC即可.根据角的平分线性质易证; (2)设PO交⊙O于F,连接CF.根据勾股定理得PO=5,则PE=8.证明△PCF∽△PEC,得CF:CE=PC:PE=1:2.根据勾股定理求解CE. (1)证明:连接OC,作OD⊥PB于D点. ∵⊙O与PA相切于点C, ∴OC⊥PA. ∵点O在∠APB的平分线上,OC⊥PA,OD⊥PB, ∴OD=OC. ∴直线PB与⊙O相切; (2)【解析】 设PO交⊙O于F,连接CF. ∵OC=3,PC=4,∴PO=5,PE=8. ∵⊙O与PA相切于点C, ∴∠PCF=∠E. 又∵∠CPF=∠EPC, ∴△PCF∽△PEC, ∴CF:CE=PC:PE=4:8=1:2. ∵EF是直径, ∴∠ECF=90°. 设CF=x,则EC=2x. 则x2+(2x)2=62, 解得x=. 则EC=2x=.
复制答案
考点分析:
相关试题推荐
如图,在⊙O中,直径AB垂直于弦CD,垂足为E,连接AC,将△ACE沿AC翻折得到△ACF,直线FC与直线AB相交于点G.
(1)直线FC与⊙O有何位置关系?并说明理由;
(2)若OB=BG=2,求CD的长.

manfen5.com 满分网 查看答案
如图,⊙O是边长为6的等边△ABC的外接圆,点D在弧BC上运动(不与B,C重合),过点D作DE∥BC,DE交AC的延长线于点E,连接AD,CD.
(1)在图1中,当AD=2manfen5.com 满分网,求AE的长;
(2)当点D为manfen5.com 满分网的中点时:
①DE与⊙O的位置关系是______
②求△ADC的内切圆半径r.

manfen5.com 满分网 查看答案
如图,在△ABC中,AB=AC,以AB为直径的半圆O交BC于点D,DE⊥AC,垂足为E.
(1)求证:点D是BC的中点;
(2)判断DE与⊙O的位置关系,并证明你的结论;
(3)如果⊙O的直径为9,cosB=manfen5.com 满分网,求DE的长.

manfen5.com 满分网 查看答案
如图,已知△ABC中,AB=BC,以AB为直径的⊙O交AC于点D,过D作DE⊥BC,垂足为E,连接OE,CD=manfen5.com 满分网,∠ACB=30°.
(1)求证:DE是⊙O的切线;
(2)分别求AB,OE的长;
(3)填空:如果以点E为圆心,r为半径的圆上总存在不同的两点到点O的距离为1,则r的取值范围为______

manfen5.com 满分网 查看答案
已知:在Rt△ABC中,∠ABC=90°,D是AC的中点,⊙O经过A、D、B三点,CB的延长线交⊙O于点E(如图1).
在满足上述条件的情况下,当∠CAB的大小变化时,图形也随着改变(如图2),在这个变化过程中,有些线段总保持着相等的关系.
(1)观察上述图形,连接图2中已标明字母的某两点,得到一条新线段与线段CE相等,请说明理由;
(2)在图2中,过点E作⊙O的切线,交AC的延长线于点F.
①若CF=CD,求sin∠CAB的值;
②若manfen5.com 满分网=n(n>0),试用含n的代数式表示sin∠CAB(直接写出结果).

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.