满分5 > 初中数学试题 >

如图,AB是⊙O的直径,点D在AB的延长线上,点C在⊙O上,CA=CD,∠CDA...

如图,AB是⊙O的直径,点D在AB的延长线上,点C在⊙O上,CA=CD,∠CDA=30°.
(1)试判断直线CD与⊙O的位置关系,并说明理由;
(2)若⊙O的半径为5,求点A到CD所在直线的距离.

manfen5.com 满分网
(1)连接OC,证明∠OCD=90°,从而判断CD与⊙O相切.易证∠A=30°,∠COD=60°,所以∠OCD=90°,从而得证; (2)作AE⊥DC,交DC的延长线于E点.运用三角函数知识,在△OCD中求出OD,从而知AD长度,然后在△ADE中即可求出AE的长. 【解析】 (1)CD是⊙O的切线.理由如下: ∵△ACD是等腰三角形,∠D=30°.∴∠CAD=∠CDA=30°. 连接OC. ∵AO=CO, ∴△AOC是等腰三角形. ∴∠CAO=∠ACO=30°, ∴∠COD=60°. 在△COD中, 又∵∠CDO=30°, ∴∠DCO=90°. ∴CD是⊙O的切线,即直线CD与⊙O相切. (2)过点A作AE⊥CD,垂足为E. 在Rt△COD中,∵∠CDO=30°, ∴OD=2OC=10,AD=AO+OD=15. ∵在Rt△ADE中,∠EDA=30°, ∴点A到CD边的距离为:AE=AD•sin30°=7.5.
复制答案
考点分析:
相关试题推荐
如图,AB为⊙O的直径,劣manfen5.com 满分网=manfen5.com 满分网弧BD∥CE,连接AE并延长交BD于D.
求证:
(1)BD是⊙O的切线;
(2)AB2=AC•AD.

manfen5.com 满分网 查看答案
如图,已知,在△ABC中,∠ABC=90°,BC为⊙O的直径,AC与⊙O交于点D,点E为AB的中点,PF⊥BC交BC于点G,交AC于点F.
(1)求证:ED是⊙O的切线;
(2)如果CF=1,CP=2,sinA=manfen5.com 满分网,求⊙O的直径BC.

manfen5.com 满分网 查看答案
如图所示,MN是⊙O的切线,B为切点,BC是⊙O的弦且∠CBN=45°,过C的直线与⊙O,MN分别交于A,D两点,过C作CE⊥BD于点E.
(1)求证:CE是⊙O的切线;
(2)若∠D=30°,BD=2+2manfen5.com 满分网,求⊙O的半径r.

manfen5.com 满分网 查看答案
如图所示,在Rt△ABC中,∠C=90°,∠BAC=60°,AB=8.半径为manfen5.com 满分网的⊙M与射线BA相切,切点为N,且AN=3.将Rt△ABC顺时针旋转120°后得到Rt△ADE,点B、C的对应点分别是点D、E.
(1)画出旋转后的Rt△ADE;
(2)求出Rt△ADE的直角边DE被⊙M截得的弦PQ的长度;
(3)判断Rt△ADE的斜边AD所在的直线与⊙M的位置关系,并说明理由.

manfen5.com 满分网 查看答案
如图,AB、AC分别是⊙O的直径和弦,点D为劣弧AC上一点,弦DE⊥AB分别交⊙O于E,交AB于H,交AC于F.P是ED延长线上一点且PC=PF.
(1)求证:PC是⊙O的切线;
(2)点D在劣弧AC什么位置时,才能使AD2=DE•DF,为什么?
(3)在(2)的条件下,若OH=1,AH=2,求弦AC的长.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.