满分5 > 初中数学试题 >

已知:如图,在△ABC中,D是AB边上一点,圆O过D、B、C三点,∠DOC=2∠...

已知:如图,在△ABC中,D是AB边上一点,圆O过D、B、C三点,∠DOC=2∠ACD=90°.
(1)求证:直线AC是圆O的切线;
(2)如果∠ACB=75°,圆O的半径为2,求BD的长.

manfen5.com 满分网
(1)证明OC⊥AC即可.根据∠DOC是等腰直角三角形可得∠DCO=45°.又∠ACD=45°,所以∠ACO=90°,得证; (2)如果∠ACB=75°,则∠BCD=30°;又∠B=∠O=45°,解斜三角形BCD求解.所以作DE⊥BC,把问题转化到解直角三角形求解.先求CD,再求DE,最后求BD得解. (1)证明:∵OD=OC,∠DOC=90°, ∴∠ODC=∠OCD=45°. ∵∠DOC=2∠ACD=90°, ∴∠ACD=45°. ∴∠ACD+∠OCD=∠OCA=90°. ∵点C在圆O上, ∴直线AC是圆O的切线. (2)【解析】 方法1:∵OD=OC=2,∠DOC=90°, ∴CD=2. ∵∠ACB=75°,∠ACD=45°, ∴∠BCD=30°, 作DE⊥BC于点E,则∠DEC=90°, ∴DE=DCsin30°=. ∵∠B=45°, ∴DB=2. 方法2:连接BO ∵∠ACB=75°,∠ACD=45°, ∴∠BCD=30°,∴∠BOD=60° ∵OD=OB=2 ∴△BOD是等边三角形 ∴BD=OD=2.
复制答案
考点分析:
相关试题推荐
如图,已知CD是△ABC中AB边上的高,以CD为直径的⊙O分别交CA,CB于点E,F,点G是AD的中点.求证:GE是⊙O的切线.

manfen5.com 满分网 查看答案
如图AB是⊙O的直径,∠A=30°,延长OB到D使BD=OB.
(1)△OBC是否是等边三角形?说明理由;
(2)求证:DC是⊙O的切线.

manfen5.com 满分网 查看答案
如图,AB是⊙O的直径,BC是一条弦,连接OC并延长至点P,使PC=BC,∠BOC=60°.
(1)求证:PB是⊙O的切线;
(2)若⊙O的半径为1,且AB、PB的长是方程x2+bx+c=0的两根,求b、c的值.

manfen5.com 满分网 查看答案
如图,△ABC内接于⊙O,AB为⊙O的直径,点D在AB的延长线上,∠A=∠D=30°.
(1)判断DC是否为⊙O的切线,并说明理由;
(2)证明:△AOC≌△DBC.

manfen5.com 满分网 查看答案
如图,在△ABC中,AB=AC,D是BC中点,AE平分∠BAD交BC于点E,点O是AB上一点,⊙O过A、E两点,交AD于点G,交AB于点F.
(1)求证:BC与⊙O相切;
(2)当∠BAC=120°时,求∠EFG的度数.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.