满分5 > 初中数学试题 >

如图,以BC为直径的⊙O交△CFB的边CF于点A,BM平分∠ABC交AC于点M,...

如图,以BC为直径的⊙O交△CFB的边CF于点A,BM平分∠ABC交AC于点M,AD⊥BC于点D,AD交BM于点N,ME⊥BC于点E,AB2=AF•AC,cos∠ABD=manfen5.com 满分网,AD=12.
(1)求证:△ANM≌△ENM;
(2)求证:FB是⊙O的切线;
(3)证明四边形AMEN是菱形,并求该菱形的面积S.

manfen5.com 满分网
(1)利用角平分线的性质定理,可以得出AM=ME,∠AMN=∠EMN,再利用SAS可证出:△ANM≌△ENM (2)利用相似三角形的判定可证出△ABF∽△ACB,从而得出∠ABF=∠C,那么可以得到∠CBF=90° (3)利用(1)中的结论先证出∠AMN=∠ANM,可以得到AM=ME=EN=AN,从而得出四边形AMEN是菱形,再求出△BND∽△BME,利用比例线段可求出ME的长,再利用菱形的面积公式可计算出菱形的面积. (1)证明:∵BC是⊙O的直径, ∴∠BAC=90°. 又∵EM⊥BC,BM平分∠ABC, ∴AM=ME,∠AMN=∠EMN. 又∵MN=MN, ∴△ANM≌△ENM. (2)证明:∵AB2=AF•AC, ∴. 又∵∠BAC=∠FAB=90°, ∴△ABF∽△ACB. ∴∠ABF=∠C. 又∵∠FBC=∠ABC+∠FBA=90°, ∴FB是⊙O的切线. (3)【解析】 由(1)得AN=EN,AM=EM,∠AMN=∠EMN, 又∵AN∥ME, ∴∠ANM=∠EMN, ∴∠AMN=∠ANM, ∴AN=AM, ∴AM=ME=EN=AN. ∴四边形AMEN是菱形. ∵cos∠ABD=,∠ADB=90°, ∴. 设BD=3x,则AB=5x, 由勾股定理AD==4x; ∵AD=12, ∴x=3, ∴BD=9,AB=15. ∵MB平分∠AME, ∴BE=AB=15, ∴DE=BE-BD=6. ∵ND∥ME, ∴∠BND=∠BME. 又∵∠NBD=∠MBE, ∴△BND∽△BME. ∴. 设ME=x,则ND=12-x,,解得x=. ∴S=ME•DE=×6=45.
复制答案
考点分析:
相关试题推荐
如图所示,已知AB是半圆O的直径,弦CD∥AB,AB=10,CD=6,E是AB延长线上一点,BE=manfen5.com 满分网.判断直线DE与半圆O的位置关系,并证明你的结论.

manfen5.com 满分网 查看答案
如图,Rt△ABC中,∠ABC=90°,以AB为直径作⊙O交AC边于点D,E是边BC的中点,连接DE.
(1)求证:直线DE是⊙O的切线;
(2)连接OC交DE于点F,若OF=CF,求tan∠ACO的值.

manfen5.com 满分网 查看答案
已知:如图,AB为⊙O的直径,AB=AC,⊙O交BC于D,DE⊥AC于E.
(1)请判断DE与⊙O的位置关系,并证明;
(2)连接AD,若⊙O的半径为manfen5.com 满分网,AD=3,求DE的长.

manfen5.com 满分网 查看答案
如图,⊙O是Rt△ABC的外接圆,∠ABC=90°,点P是圆外一点,PA切⊙O于点A,且PA=PB.
(1)求证:PB是⊙O的切线;
(2)已知PA=manfen5.com 满分网,BC=1,求⊙O的半径.

manfen5.com 满分网 查看答案
如图,已知△ABC中,∠C=∠ABC,以AB为直径作⊙O交BC于D,DE⊥AC,垂足为E.
(1)判断DE与⊙O的位置关系,并说明理由;
(2)如果BC=10,CE=4,求直径AB的长.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.