满分5 > 初中数学试题 >

如图,AB是半圆O的直径,C是半径OA上一点,PC⊥AB,点D是半圆上位于PC右...

如图,AB是半圆O的直径,C是半径OA上一点,PC⊥AB,点D是半圆上位于PC右侧的一点,连接AD交线段PC于点E,且PD=PE.
(1)求证:PD是⊙O的切线;
(2)若⊙O的半径为4,PC=8,设OC=x,PD2=y.
①求y关于x的函数关系式;
②当x=1时,求tan∠BAD的值.

manfen5.com 满分网
(1)D要证明PD是⊙O的切线,只需证明OD和PD垂直即可. (2)设PC与⊙O交于F点,连接OF,根据勾股定理求得CF,PF的值,再根据切割线定理求出函数关系式,从而不难求得tan∠BAD的值. (1)证明:连接OD,则∠OAE=∠ODE, ∵PC⊥AB, ∴∠OAE+∠CEA=90°. ∵PD=PE, ∴∠CEA=∠PED=∠PDE. ∴∠ODE+∠PDE=90°. 即PD是⊙O的切线. (2)【解析】 ①设PC与⊙O交于F点,连接OF, ∵PC⊥AB, ∴在Rt△CFO中,CF=. ∵⊙O的半径为4,OC=x, ∴CF=. ∵PD2=(8+)(8-)=48+x2 ∴y=x2+48. ②当x=1时,y=49,即PD=PE=7,OC=1, ∴EC=1,AC=3. ∴tan∠BAD=.
复制答案
考点分析:
相关试题推荐
如图,△ABC内接于半圆,AB为直径,过点A作直线MN,若∠MAC=∠ABC.
(1)求证:MN是半圆的切线.
(2)设D是弧AC的中点,连接BD交AC于G,过D作DE⊥AB于E,交AC于F,求证:FD=FG.
(3)在(2)的条件下,若△DFG的面积为4.5,且DG=3,GC=4,试求△BCG的面积.

manfen5.com 满分网 查看答案
如图,在Rt△ABC中,∠C=90°,以BC为直径作⊙O交AB于点D,取AC的中点E,连接DE、OE.
(1)求证:DE是⊙O的切线;
(2)如果⊙O的半径是manfen5.com 满分网cm,ED=2cm,求AB的长.

manfen5.com 满分网 查看答案
如图,在直角梯形ABCD中,AD∥BC,∠ABC=90°,AB=12cm,AD=8cm,BC=22cm,AB为⊙O的直径,动点P从点A开始沿AD边向点D以1cm/s的速度运动,动点Q从点C开始沿CB边向点B以2cm/s的速度运动.P、Q分别从点A、C同时出发,当其中一个动点到达端点时,另一个动点也随之停止运动,设运动时间为t(s).
(1)当t为何值时,四边形PQCD为平行四边形?
(2)当t为何值时,PQ与⊙O相切?

manfen5.com 满分网 查看答案
如图,在平面直角坐标系中,直线l:y=-2x-8分别与x轴,y轴相交于A,B两点,点P(0,k)是y轴的负半轴上的一个动点,以P为圆心,3为半径作⊙P.
(1)连接PA,若PA=PB,试判断⊙P与x轴的位置关系,并说明理由;
(2)当k为何值时,以⊙P与直线l的两个交点和圆心P为顶点的三角形是正三角形.

manfen5.com 满分网 查看答案
如图,AB为⊙O的直径,D是⊙O上的一点,过O点作AB的垂线交AD于点E,交BD的延长线于点C,F为CE上一点,且FD=FE.
(1)请探究FD与⊙O的位置关系,并说明理由;
(2)若⊙O的半径为2,BD=manfen5.com 满分网,求BC的长.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.