满分5 > 初中数学试题 >

如图,在等腰三角形ABC中,AB=AC,O为AB上一点,以O为圆心、OB长为半径...

如图,在等腰三角形ABC中,AB=AC,O为AB上一点,以O为圆心、OB长为半径的圆交BC于D,DE⊥AC交AC于E.
(1)求证:DE是⊙O的切线;
(2)若⊙O与AC相切于F,AB=AC=5cm,sinA=manfen5.com 满分网,求⊙O的半径的长.

manfen5.com 满分网
(1)根据切线的判定定理,只需连接OD,证明OD⊥DE.已知DE⊥AC,故利用同位角相等,两条直线平行就可证明; (2)根据切线的性质定理,连接过切点的半径,运用锐角三角函数的定义,用半径表示OA的长,再根据AB的长列方程求解. (1)证明:连接OD, ∵OB=OD, ∴∠B=∠ODB, ∵AB=AC, ∴∠B=∠C, ∴∠ODB=∠C, ∴OD∥AC. 又DE⊥AC, ∴DE⊥OD. ∴DE是⊙O的切线. (2)【解析】 ⊙O与AC相切于F点,连接OF, 则:OF⊥AC. 在Rt△OAF中,sinA=, ∴OA=OF, 又AB=OA+OB=5, ∴. ∴OF=cm.
复制答案
考点分析:
相关试题推荐
已知:如图,AB是⊙O的直径,AD是弦,OC垂直AD于F交⊙O于E,连接DE、BE,且∠C=∠BED.
(1)求证:AC是⊙O的切线;
(2)若OA=10,AD=16,求AC的长.

manfen5.com 满分网 查看答案
如图,AB是半圆O的直径,C是半径OA上一点,PC⊥AB,点D是半圆上位于PC右侧的一点,连接AD交线段PC于点E,且PD=PE.
(1)求证:PD是⊙O的切线;
(2)若⊙O的半径为4,PC=8,设OC=x,PD2=y.
①求y关于x的函数关系式;
②当x=1时,求tan∠BAD的值.

manfen5.com 满分网 查看答案
如图,△ABC内接于半圆,AB为直径,过点A作直线MN,若∠MAC=∠ABC.
(1)求证:MN是半圆的切线.
(2)设D是弧AC的中点,连接BD交AC于G,过D作DE⊥AB于E,交AC于F,求证:FD=FG.
(3)在(2)的条件下,若△DFG的面积为4.5,且DG=3,GC=4,试求△BCG的面积.

manfen5.com 满分网 查看答案
如图,在Rt△ABC中,∠C=90°,以BC为直径作⊙O交AB于点D,取AC的中点E,连接DE、OE.
(1)求证:DE是⊙O的切线;
(2)如果⊙O的半径是manfen5.com 满分网cm,ED=2cm,求AB的长.

manfen5.com 满分网 查看答案
如图,在直角梯形ABCD中,AD∥BC,∠ABC=90°,AB=12cm,AD=8cm,BC=22cm,AB为⊙O的直径,动点P从点A开始沿AD边向点D以1cm/s的速度运动,动点Q从点C开始沿CB边向点B以2cm/s的速度运动.P、Q分别从点A、C同时出发,当其中一个动点到达端点时,另一个动点也随之停止运动,设运动时间为t(s).
(1)当t为何值时,四边形PQCD为平行四边形?
(2)当t为何值时,PQ与⊙O相切?

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.