满分5 > 初中数学试题 >

如图,直线AB经过⊙O上的点C,并且OA=OB,CA=CB,⊙O交直线OB于E,...

如图,直线AB经过⊙O上的点C,并且OA=OB,CA=CB,⊙O交直线OB于E,D,连接EC,CD.
(1)求证:直线AB是⊙O的切线;
(2)试猜想BC,BD,BE三者之间的等量关系,并加以证明;
(3)若tan∠CED=manfen5.com 满分网,⊙O的半径为3,求OA的长.

manfen5.com 满分网
(1)连接OC,根据等腰三角形的性质易得OC⊥AB;即可得到证明; (2)易得∠BCD=∠E,又有∠CBD=∠EBC,可得△BCD∽△BEC;故可得BC2=BD•BE; (3)易得△BCD∽△BEC,BD=x,由三角形的性质,易得BC2=BD•BE,代入数据即可求出答案. (1)证明:如图,连接OC,(1分) ∵OA=OB,CA=CB, ∴OC⊥AB,(2分) ∴AB是⊙O的切线.(3分) (2)【解析】 BC2=BD•BE.(4分) 证明:∵ED是直径, ∴∠ECD=90°, ∴∠E+∠EDC=90°. 又∵∠BCD+∠OCD=90°,∠OCD=∠ODC(OC=OD), ∴∠BCD=∠E.(5分) 又∵∠CBD=∠EBC, ∴△BCD∽△BEC.(6分) ∴. ∴BC2=BD•BE.(7分) (3)【解析】 ∵tan∠CED=, ∴. ∵△BCD∽△BEC, ∴.(8分) 设BD=x,则BC=2x, ∵BC2=BD•BE, ∴(2x)2=x•(x+6).(9分) ∴x1=0,x2=2. ∵BD=x>0, ∴BD=2. ∴OA=OB=BD+OD=3+2=5.(10分)
复制答案
考点分析:
相关试题推荐
如图,AB是⊙O的直径,且点C为⊙O上的一点,∠BAC=30°,M是OA上一点,过M作AB的垂线交AC于点N,交BC的延长线于点E,直线CF交EN于点F,且∠ECF=∠E.
(1)证明:CF是⊙O的切线;
(2)设⊙O的半径为1,且AC=CE,求MO的长.

manfen5.com 满分网 查看答案
如图,⊙O是△ABC的外接圆,BD为圆O的直径,AB=AC,AD交BC于E,ED=2AE.
(1)求证:AB2=AD•AE;
(2)求∠ADB的度数;
(3)延长DB到F,使BF=BO,连接FA.求证:直线FA为⊙O的切线.

manfen5.com 满分网 查看答案
如图,AB=BC,以AB为直径的⊙O交AC于点D,过D作DE⊥BC,垂足为E.
(1)求证:DE是⊙O的切线;
(2)作DG⊥AB交⊙O于G,垂足为F,若∠A=30°,AB=8,求弦DG的长.

manfen5.com 满分网 查看答案
已知:如图,在△ABC中,AB=AC,AE是角平分线,BM平分∠ABC交AE于点M,经过B,M两点的⊙O交BC于点G,交AB于点F,FB恰为⊙O的直径.
(1)求证:AE与⊙O相切;
(2)当BC=4,cosC=manfen5.com 满分网时,求⊙O的半径.

manfen5.com 满分网 查看答案
如图所示,AB是⊙O直径,OD⊥弦BC于点F,且交⊙O于点E,若∠AEC=∠ODB.
(1)判断直线BD和⊙O的位置关系,并给出证明;
(2)当AB=10,BC=8时,求BD的长.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.