满分5 > 初中数学试题 >

已知:如图,在Rt△ABC中,∠C=90°,点O在AB上,以O为圆心,OA长为半...

已知:如图,在Rt△ABC中,∠C=90°,点O在AB上,以O为圆心,OA长为半径的圆与AC,AB分别交于点D,E,且∠CBD=∠A.
(1)判断直线BD与⊙O的位置关系,并证明你的结论;
(2)若AD:AO=8:5,BC=2,求BD的长.

manfen5.com 满分网
(1)要证某线是圆的切线,已知此线过圆上某点,连接圆心和这点(即为半径),再证垂直即可; (2)通过作辅助线,根据已知条件求出∠CBD的度数,在Rt△BCD中求解即可. 【解析】 (1)直线BD与⊙O相切.(1分) 证明:如图,连接OD. ∵OA=OD ∴∠A=∠ADO ∵∠C=90°,∴∠CBD+∠CDB=90° 又∵∠CBD=∠A ∴∠ADO+∠CDB=90° ∴∠ODB=90° ∴直线BD与⊙O相切.(2分) (2)解法一:如图,连接DE. ∵AE是⊙O的直径,∴∠ADE=90° ∵AD:AO=8:5 ∴(3分) ∵∠C=90°,∠CBD=∠A (4分) ∵BC=2, ∴ (5分) 解法二:如图,过点O作OH⊥AD于点H. ∴AH=DH= ∵AD:AO=8:5 ∴cosA=(3分) ∵∠C=90°,∠CBD=∠A ∴(4分) ∵BC=2 ∴(5分)
复制答案
考点分析:
相关试题推荐
如图,已知⊙O是△ABC的外接圆,AB为直径,若PA⊥AB,PO过弧AC的中点M,求证:PC是⊙O的切线.

manfen5.com 满分网 查看答案
如图,在Rt△ABC中,∠C=90°,BE平分∠ABC交AC于点E,点D在AB边上且DE⊥BE.
(1)判断直线AC与△DBE外接圆的位置关系,并说明理由;
(2)若AD=6,AE=6manfen5.com 满分网,求BC的长.

manfen5.com 满分网 查看答案
如图,AB是⊙O的直径,BD是⊙O的弦,延长BD到点C,使DC=BD,连接AC,过点D作DE⊥AC,垂足为E.
(1)求证:AB=AC;
(2)求证:DE为⊙O的切线;
(3)若⊙O的半径为5,∠BAC=60°,求DE的长.

manfen5.com 满分网 查看答案
如图:AB是⊙O的直径,AD是弦,∠DAB=22.5°,延长AB到点C,使得∠ACD=45°.
(1)求证:CD是⊙O的切线;
(2)若AB=2manfen5.com 满分网,求BC的长.

manfen5.com 满分网 查看答案
如图,在平面直角坐标系中,直线y=manfen5.com 满分网与x轴、y轴分别交于A、B两点,将△ABO绕原点O顺时针旋转得到△A′B′O,并使OA′⊥AB,垂足为D,直线AB与线段A´B´相交于点G.动点E从原点O出发,以1个单位/秒的速度沿x轴正方向运动,设动点E运动的时间为t秒.
(1)求点D的坐标;
(2)连接DE,当DE与线段OB′相交,交点为F,且四边形DFB′G是平行四边形时,(如图2)求此时线段DE所在的直线的解析式;
(3)若以动点为E圆心,以manfen5.com 满分网为半径作⊙E,连接A′E,t为何值时,Tan∠EA′B′=manfen5.com 满分网?并判断此时直线A′O与⊙E的位置关系,请说明理由.
manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.