满分5 > 初中数学试题 >

如图,已知等边△ABC,以边BC为直径的半圆与边AB,AC分别交于点D,点E,过...

如图,已知等边△ABC,以边BC为直径的半圆与边AB,AC分别交于点D,点E,过点D作DF⊥AC,垂足为点F.
(1)判断DF与⊙O的位置关系,并证明你的结论;
(2)过点F作FH⊥BC,垂足为点H.若等边△ABC的边长为4,求FH的长.
(结果保留根号)

manfen5.com 满分网
(1)连接OD,证∠ODF=90°即可. (2)利用△ADF是30°的直角三角形可求得AF长,同理可利用△FHC中的60°的三角函数值可求得FH长. 【解析】 (1)DF与⊙O相切. 证明:连接OD, ∵△ABC是等边三角形,DF⊥AC, ∴∠ADF=30°. ∵OB=OD,∠DBO=60°, ∴∠BDO=60°.(3分) ∴∠ODF=180°-∠BDO-∠ADF=90°. ∴DF是⊙O的切线.(5分) (2)∵△BOD、△ABC是等边三角形, ∴∠BDO=∠A=60°, ∴OD∥AC, ∵O是BC的中点, ∴OD是△ABC的中位线, ∴AD=BD=2, 又∵∠ADF=90°-60°=30°, ∴AF=1. ∴FC=AC-AF=3.(7分) ∵FH⊥BC, ∴∠FHC=90°. 在Rt△FHC中,sin∠FCH=, ∴FH=FC•sin60°=. 即FH的长为.(10分)
复制答案
考点分析:
相关试题推荐
已知:如图,在Rt△ABC中,∠C=90°,点O在AB上,以O为圆心,OA长为半径的圆与AC,AB分别交于点D,E,且∠CBD=∠A.
(1)判断直线BD与⊙O的位置关系,并证明你的结论;
(2)若AD:AO=8:5,BC=2,求BD的长.

manfen5.com 满分网 查看答案
如图,已知⊙O是△ABC的外接圆,AB为直径,若PA⊥AB,PO过弧AC的中点M,求证:PC是⊙O的切线.

manfen5.com 满分网 查看答案
如图,在Rt△ABC中,∠C=90°,BE平分∠ABC交AC于点E,点D在AB边上且DE⊥BE.
(1)判断直线AC与△DBE外接圆的位置关系,并说明理由;
(2)若AD=6,AE=6manfen5.com 满分网,求BC的长.

manfen5.com 满分网 查看答案
如图,AB是⊙O的直径,BD是⊙O的弦,延长BD到点C,使DC=BD,连接AC,过点D作DE⊥AC,垂足为E.
(1)求证:AB=AC;
(2)求证:DE为⊙O的切线;
(3)若⊙O的半径为5,∠BAC=60°,求DE的长.

manfen5.com 满分网 查看答案
如图:AB是⊙O的直径,AD是弦,∠DAB=22.5°,延长AB到点C,使得∠ACD=45°.
(1)求证:CD是⊙O的切线;
(2)若AB=2manfen5.com 满分网,求BC的长.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.