满分5 > 初中数学试题 >

如图,点A,B,C,D是直径为AB的⊙O上四个点,C是劣弧的中点,AC交BD于点...

如图,点A,B,C,D是直径为AB的⊙O上四个点,C是劣弧manfen5.com 满分网的中点,AC交BD于点E,AE=2,EC=1.
(1)求证:△DEC∽△ADC;
(2)试探究四边形ABCD是否是梯形?若是,请你给予证明并求出它的面积;若不是,请说明理由.
(3)延长AB到H,使BH=OB.求证:CH是⊙O的切线.

manfen5.com 满分网
(1)C是劣弧的中点,根据等弧所对的圆周角相等就可以证明角相等,从而证明△DEC∽△ADC; (2)首先利用(1)的结论求出DC,再利用勾股定理计算AB,根据计算结果可以判定四边形OBCD是菱形,然后判断四边形ABCD是梯形; (3)利用(2)的结论OC⊥BD,OG=GC,再利用平行线的判定方法知道BG∥CH,这样根据切线的判定方法就可以判定了. (1)证明:∵C是劣弧的中点, ∴∠DAC=∠CDB.(1分) ∵∠ACD=∠ACD, ∴△DEC∽△ADC.(3分) (2)【解析】 连接OD, ∵, ∵CE=1,AC=AE+EC=2+1=3, ∴DC2=AC•EC=3×1=3. ∴DC=.(4分) ∵BC=DC=, ∵AB是⊙O的直径, ∴∠ACB=90°. ∴AB2=AC2+CB2=32+()2=12. ∴AB=. ∴OD=OB=BC=DC=. ∴四边形OBCD是菱形. ∴DC∥AB,DC<AB. ∴四边形ABCD是梯形.(5分) 法一: 过C作CF垂直AB于F,连接OC,则OB=BC=OC=, ∴∠OBC=60°.(6分) ∴sin60°=, CF=BC•sin60°=. ∴S梯形ABCD=CF(AB+DC)=.(7分) 法二:(接上证得四边形ABCD是梯形) ∵DC∥AB, ∴AD=BC. 连接OC,则△AOD,△DOC和△OBC的边长均为的等边三角形.(6分) ∴△AOD≌△DOC≌△OBC. ∴S梯形ABCD=3•S△AOD=.(7分) (3)证明:连接OC交BD于G. 由(2)得四边形OBCD是菱形. ∴OC⊥BD且OG=GC.(8分) ∵OB=BH, ∴BG∥CH.(9分) ∴∠OCH=∠OGB=90°. ∴CH是⊙O的切线.(10分)
复制答案
考点分析:
相关试题推荐
如图,A是半径为12cm的⊙O上的定点,动点P从A出发,以2πcm/s的速度沿圆周逆时针运动,当点P回到A地立即停止运动.
(1)如果∠POA=90°,求点P运动的时间;
(2)如果点B是OA延长线上的一点,AB=OA,那么当点P运动的时间为2s时,判断直线BP与⊙O的位置关系,并说明理由.

manfen5.com 满分网 查看答案
如图,AB是半⊙O的直径,弦AC与AB成30°的角,AC=CD.
(1)求证:CD是半⊙O的切线;
(2)若OA=2,求AC的长.

manfen5.com 满分网 查看答案
如图,在△ABC中,AB=AC,以AB为直径的圆O交BC于点D,交AC于点E,过点D作DF⊥AC,垂足为F.
(1)求证:DF为⊙O的切线;
(2)若过A点且与BC平行的直线交BE的延长线于G点,连接CG.当△ABC是等边三角形时,求∠AGC的度数.

manfen5.com 满分网 查看答案
AB是⊙O的直径,D是⊙O上一动点,延长AD到C使CD=AD,连接BC,BD.
(1)证明:当D点与A点不重合时,总有AB=BC;
(2)设⊙O的半径为2,AD=x,BD=y,用含x的式子表示y;
(3)BC与⊙O是否有可能相切?若不可能相切,则说明理由;若能相切,则指出x为何值时相切.

manfen5.com 满分网 查看答案
如图,已知等边△ABC,以边BC为直径的半圆与边AB,AC分别交于点D,点E,过点D作DF⊥AC,垂足为点F.
(1)判断DF与⊙O的位置关系,并证明你的结论;
(2)过点F作FH⊥BC,垂足为点H.若等边△ABC的边长为4,求FH的长.
(结果保留根号)

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.