满分5 > 初中数学试题 >

如图1所示,在△ABC中,AB=AC=2,∠A=90°,O为BC的中点,动点E在...

如图1所示,在△ABC中,AB=AC=2,∠A=90°,O为BC的中点,动点E在BA边上自由移动,动点F在AC边上自由移动.
(1)点E,F的移动过程中,△OEF是否能成为∠EOF=45°的等腰三角形?若能,请指出△OEF为等腰三角形时动点E,F的位置;若不能,请说明理由;
(2)当∠EOF=45°时,设BE=x,CF=y,求y与x之间的函数解析式,写出x的取值范围;
(3)在满足(2)中的条件时,若以O为圆心的圆与AB相切(如图2),试探究直线EF与⊙O的位置关系,并证明你的结论.manfen5.com 满分网
(1)可分三种情况进行讨论: ①当OE=EF时;②当OF=EF时;③当OE=OF时; (2)本题可通过图中的相似三角形BOE和CFO,可得出关于BO,OC,OE,OF的比例关系式,由于OB=OC=,由此可得出关于y,x的函数关系式. (3)要证EF是否与圆O相切,那么就要证O到EF和AB的距离是否相等. 【解析】 (1)点E,F移动的过程中,△OEF能成为∠EOF=45°的等腰三角形. ①当OE=EF时,∠OEF是直角,F,A重合,OE是三角形ABC的中位线,E是AB中点. ②当OF=EF时,∠OFE是直角,与①同理,E,A重合,F是AC中点 ③当OE=OF时,如果连接OA,那么OA必然平分∠BAC, ∴BO=CO,∠B=∠C=45°,EO=FO, 因为∠EOF=45°, ∴∠BOE+∠COF=∠BOE+∠BEO=135°, ∴∠COF=∠BEO, ∴△BEO≌△COF, ∴BE=CO=BC, ∵AB=AC=2,∴BC=2,由此可得出BE=CF=. (2)在△OEB和△FOC中, ∵∠EOB+∠FOC=135°,∠EOB+∠OEB=135°, ∴∠FOC=∠OEB. 又∵∠B=∠C, ∴△OEB∽△FOC. ∴=. ∵BE=x,CF=y,OB=OC==, ∴y=(1≤x≤2). (3)EF与⊙O相切. ∵△OEB∽△FOC, ∴=. ∴=. 即=. 又∵∠B=∠EOF=45°, ∴△BEO∽△OEF. ∴∠BEO=∠OEF. ∴点O到AB和EF的距离相等. ∵AB与⊙O相切, ∴点O到EF的距离等于⊙O的半径. ∴EF与⊙O相切.
复制答案
考点分析:
相关试题推荐
已知⊙O1经过A(-4,2),B(-3,3),C(-1,-1),O(0,0)四点,一次函数y=-x-2的图象是直线l,直线l与y轴交于点D.
(1)在右边的平面直角坐标系中画出⊙O1,直线l与⊙O1的交点坐标为______
(2)若⊙O1上存在整点P(横坐标与纵坐标均为整数的点称为整点),使得△APD为等腰三角形,所有满足条件的点P坐标为______
(3)将⊙O1沿x轴向右平移______

manfen5.com 满分网 查看答案
已知:如图,BD为⊙O的直径,BC为弦,A为BC弧中点,AF∥BC交DB的延长线于点F,AD交BC于点E,AE=2,ED=4.
(1)求证:AF是⊙O的切线;
(2)求AB的长.

manfen5.com 满分网 查看答案
如图,A是以BC为直径的⊙O上一点,于点D,AD⊥BC过点B作⊙O的切线,与CA的延长线相交于点E,G是AD的中点,连接CG并延长与BE相交于点F,延长AF与CB的延长线相交于点P.
(1)求证:BF=EF;
(2)求证:PA是⊙O的切线;
(3)若FG=BF,且⊙O的半径长为manfen5.com 满分网,求BD和FG的长度.

manfen5.com 满分网 查看答案
如图,形如三角板的△ABC中,∠ACB=90°,∠ABC=45°,BC=12cm,形如矩形量角器的半圆O的直径DE=12cm,矩形DEFG的宽EF=6cm,矩形量角器以2cm/s的速度从左向右运动,在运动过程中,点D、E始终在BC所在的直线上,设运动时间为x(s),矩形量角器和△ABC的重叠部分的面积为S(cm2).当x=0(s)时,点E与点C重合.(图(3)、图(4)、图(5)供操作用).
(1)当x=3时,如图(2),S=______cm2,当x=6时,S=______cm2,当x=9时,S=______cm2
(2)当3<x<6时,求S关于x的函数关系式;
(3)当6<x<9时,求S关于x的函数关系式;
(4)当x为何值时,△ABC的斜边所在的直线与半圆O所在的圆相切?
manfen5.com 满分网manfen5.com 满分网
manfen5.com 满分网
查看答案
manfen5.com 满分网如图,已知:△ABC内接于⊙O,点D在OC的延长线上,sinB=manfen5.com 满分网,∠D=30度.
(1)求证:AD是⊙O的切线;
(2)若AC=6,求AD的长.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.