如图所示,在直角梯形ABCD中,∠D=∠C=90°,AB=4,BC=6,AD=8,点P、Q同时从A点出发,分别做匀速运动,其中点P沿AB、BC向终点C运动,速度为每秒2个单位,点Q沿AD向终点D运动,速度为每秒1个单位,当这两点中有一个点到达自己的终点时,另一个点也停止运动,设这两个点从出发运动了t秒.
(1)动点P与Q哪一点先到达自己的终点?此时t为何值;
(2)当O<t<2时,写出△PQA的面积S与时间t的函数关系式;
(3)以PQ为直径的圆能否与CD相切?若有可能,求出t的值或t的取值范围;若不可能,请说明理由.
考点分析:
相关试题推荐
如图,点O是已知线段AB上一点,以OA为半径的⊙O交线段AB于点C,以线段OB为直径的圆与⊙O的一个交点为D,过点A作AB的垂线交BD的延长线于点M.
(1)求证:BD是⊙O的切线;
(2)若BC,BD的长度是关于x的方程x
2-6x+8=0的两个根,求⊙O的半径;
(3)在上述条件下,求线段MD的长.
查看答案
如图,⊙O的直径AB=4,∠ABC=30°,BC=
,D是线段BC的中点.
(1)试判断点D与⊙O的位置关系,并说明理由;
(2)过点D作DE⊥AC,垂足为点E,求证:直线DE是⊙O的切线.
查看答案
如图,△ABC为圆O的内接三角形,BD为⊙O的直径,AB=AC,AD交BC于E,AE=2,ED=4.
(1)求证:△ABE∽△ADB,并求AB的长;
(2)延长DB到F,使BF=BO,连接FA,那么直线FA与⊙O相切吗?为什么?
查看答案
已知:如图,以△ABC的边AB为直径的⊙O交边AC于点D,且过点D的切线DE平分边BC.
(1)BC与⊙O是否相切?请说明理由;
(2)当△ABC满足什么条件时,以点O,B,E,D为顶点的四边形是平行四边形?并说明理由.
查看答案
如图,AC为⊙O直径,B为AC延长线上的一点,BD交⊙O于点D,∠BAD=∠B=30°
(1)求证:BD是⊙O的切线;
(2)请问:BC与BA有什么数量关系?写出这个关系式,并说明理由.
查看答案