满分5 > 初中数学试题 >

如图,⊙O1和⊙O2内切于点P,且⊙O1过点O2,PB是⊙O2的直径,A为⊙O2...

如图,⊙O1和⊙O2内切于点P,且⊙O1过点O2,PB是⊙O2的直径,A为⊙O2上的点,连接AB,过O1作O1C⊥BA于C,连接CO2.已知PA=manfen5.com 满分网,PB=4.
(1)求证:BA是⊙O1的切线;
(2)求∠BCO2的正切值.

manfen5.com 满分网
(1)由题意得O1C⊥BA,证得O1C为半径即可; (2)应把∠BCO2进行转移,转移到已求得的线段的比值. (1)证明:∵PB是⊙O2的直径,A为⊙O2上的点, ∴∠PAB=90°. 又∵O1C⊥BA, ∴△PAB∽△O1CB. ∵PA=,PB=4, ∴01C=1. ∴O1C是⊙O1的半径, ∵O1C⊥BA于C, ∴BA是⊙O1的切线. (2)【解析】 BC==, 连接PC; ∵∠B=∠B,∠BCO2=∠BPC, ∴△BPC∽△BCO2, ∴O2C:CP=BO2:BC=2:=tanBPC=tanBCO2, (在Rt△PCO2中,tanBPC=O2C:CP) ∴tanBCO2=.
复制答案
考点分析:
相关试题推荐
如图,已知⊙O1和⊙O2相交于A、B两点,直线CD、EF过点B交⊙O1于点C、E,交⊙O2于点D、F.
(1)求证:△ACD∽△AEF;
(2)若AB⊥CD,且在△AEF中,AF、AE、EF的长分别为3、4、5,求证:AC是⊙O2的切线.

manfen5.com 满分网 查看答案
如图1,△ABC内接于⊙O,AD平分∠BAC,交直线BC于点E,交⊙O于点D.
(1)过点D作MN∥BC,求证:MN是⊙O切线;
(2)求证:AB•AC=AD•AE;
(3)如图2,AE平分∠BAC的外角∠FAC,交BC的延长线于点E,EA的延长线交⊙O于点D.结论AB•AC=AD•AE是否仍然成立?如果成立,请写出证明过程;如果不成立,请说明理由.

manfen5.com 满分网 查看答案
如图,AB是⊙O的直径,过A作⊙O的切线,在切线上截取AC=AB,连接OC交⊙O于D,连接BD并延长交AC于E,⊙F是△ADE的外接圆,F在AE上.
求证:(1)CD是⊙F的切线;(2)CD=AE.

manfen5.com 满分网 查看答案
已知:如图,△ABC中,AC=BC,以BC为直径的⊙O交AB于点D,过点D作DE⊥AC于点E,交BC的延长线于点F.
求证:
(1)AD=BD;
(2)DF是⊙O的切线.

manfen5.com 满分网 查看答案
如图,在△ABC中,∠ABC=90°,AB=6,BC=8.以AB为直径的⊙O交AC于D,E是BC的中点,连接ED并延长交BA的延长线于点F.
(1)求证:DE是⊙O的切线;
(2)求DB的长;
(3)求S△FAD:S△FDB的值.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.