满分5 > 初中数学试题 >

如图,直线l切⊙O于点A,点P为直线l上一点,直线PO交⊙O于点C、B,点D在线...

如图,直线l切⊙O于点A,点P为直线l上一点,直线PO交⊙O于点C、B,点D在线段AP上,连接DB,且AD=DB.
(1)求证:DB为⊙O的切线.
(2)若AD=1,PB=BO,求弦AC的长.

manfen5.com 满分网
(1)要证明DB为⊙O的切线,只要证明∠OBD=90即可. (2)根据已知及直角三角形的性质可以得到PD=2BD=2DA=2,再利用等角对等边可以得到AC=AP,这样求得AP的值就得出了AC的长. (1)证明:连接OD; ∵PA为⊙O切线, ∴∠OAD=90°; 在△OAD和△OBD中,, ∴△OAD≌△OBD, ∴∠OBD=∠OAD=90°, ∴OB⊥BD ∴DB为⊙O的切线 (2)【解析】 在Rt△OAP中; ∵PB=OB=OA, ∴OP=2OA, ∴∠OPA=30°, ∴∠POA=60°=2∠C, ∴PD=2BD=2DA=2, ∴∠OPA=∠C=30°, ∴AC=AP=3.
复制答案
考点分析:
相关试题推荐
已知AB是⊙O的直径,AP是⊙O的切线,A是切点,BP与⊙O交于点C.manfen5.com 满分网
(1)如图①,若AB=2,∠P=30°,求AP的长(结果保留根号);
(2)如图②,若D为AP的中点,求证:直线CD是⊙O的切线.
查看答案
如图,AB是⊙O的直径,BC是⊙O的弦,⊙O的割线PDE垂直AB于点F,交BC于点G,连接PC,∠BAC=∠BCP,求解下列问题:
(1)求证:CP是⊙O的切线.
(2)当∠ABC=30°,BG=manfen5.com 满分网,CG=manfen5.com 满分网时,求以PD、PE的长为两根的一元二次方程.
(3)若(1)的条件不变,当点C在劣弧AD上运动时,应再具备什么条件可使结论BG2=BF•BO成立?试写出你的猜想,并说明理由.

manfen5.com 满分网 查看答案
如图,AB为圆O的直径,C为圆O上一点,AD和过C点的直线互相垂直,垂足为D,且AC平分∠DAB,延长AB交DC于点E.
(1)判定直线DE与圆O的位置关系,并说明你的理由;
(2)求证:AC2=AD•AB;
(3)以下两个问题任选一题作答.(若两个问题都答,则以第一问的解答评分)
①若CF⊥AB于点F,试讨论线段CF、CE和DE三者的数量关系;
②若EC=5manfen5.com 满分网,EB=5,求图中阴影部分的面积.

manfen5.com 满分网 查看答案
如图,已知AC、AB是⊙O的弦,AB>AC.
(1)在图(a)中,能否在AB上确定一点E,使得AC2=AE•AB,为什么?
(2)在图(b)中,在条件(1)的结沦下延长EC到P,连接PB,如果PB=PE,试判断PB和⊙O的位置关系,并说明理由.

manfen5.com 满分网 查看答案
如图,AO是△ABC的中线,⊙O与AB边相切于点D.
(1)要使⊙O与AC边也相切,应增加条件______(任写一个);
(2)增加条件后,请你说明⊙O与AC边相切的理由.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.