满分5 > 初中数学试题 >

如图,已知AB为⊙O的直径,PA,PC是⊙O的切线,A,C为切点,∠BAC=30...

如图,已知AB为⊙O的直径,PA,PC是⊙O的切线,A,C为切点,∠BAC=30°.
(Ⅰ)求∠P的大小;
(Ⅱ)若AB=2,求PA的长(结果保留根号).

manfen5.com 满分网
(Ⅰ)根据切线的性质及切线长定理可证明△PAC为等边三角形,则∠P的大小可求; (Ⅱ)由(Ⅰ)知PA=PC,在Rt△ACB中,利用30°的特殊角度可求得AC的长. 【解析】 (Ⅰ)∵PA是⊙O的切线,AB为⊙O的直径, ∴PA⊥AB, ∴∠BAP=90°; ∵∠BAC=30°, ∴∠CAP=90°-∠BAC=60°. 又∵PA、PC切⊙O于点A、C, ∴PA=PC, ∴△PAC为等边三角形, ∴∠P=60°. (Ⅱ)如图,连接BC,则∠ACB=90°. 在Rt△ACB中,AB=2,∠BAC=30°, ∵cos∠BAC=, ∴AC=AB•cos∠BAC=2cos30°=. ∵△PAC为等边三角形, ∴PA=AC, ∴PA=.
复制答案
考点分析:
相关试题推荐
如图,AB是⊙O的直径,点C在BA的延长线上,CA=AO,点D在⊙O上,∠ABD=30°.
(1)求证:CD是⊙O的切线;
(2)若点P在直线AB上,⊙P与⊙O外切于点B,与直线CD相切于点E,设⊙O与⊙P的半径分别为r与R,求manfen5.com 满分网的值.

manfen5.com 满分网 查看答案
已知⊙O1和⊙O2相交于A、B两点,过A点作⊙O1的切线交⊙O2于点E,连接EB并延长交⊙O1于点C,直线CA交⊙O2于点D.
(1)如图,当点D与点A不重合时,试猜想线段EA=ED是否成立?证明你的结论;
(2)当点D与点A重合时,直线AC与⊙O2有怎样的位置关系?此时若BC=2,CE=8,求⊙O1的直径.

manfen5.com 满分网 查看答案
如图①,在△ABC中,AB=AC,O为AB的中点.以O为圆心,OB为半径的圆交BC于点D,过D作DE⊥AC,垂足为E,我们可以证得DE是⊙O的切线.
(1)若点O沿AB向点B移动,以O为圆心,OB为半径的圆仍交BC于点D,DE⊥AC,垂足为E,AB=AC不变(如图②),那么DE与⊙O有什么位置关系,请写出你的结论并证明;
(2)在(1)的条件下,若⊙O与AC相切于点F,交AB于点G(如图③).已知⊙O的半径长为3,CE=1,求AF的长.
manfen5.com 满分网
查看答案
如图,PA是⊙O的切线,切点是A,过点A作AH⊥OP于点H,交⊙O于点B.
求证:PB是⊙O的切线.

manfen5.com 满分网 查看答案
如图,在正方形ABCD中,E是AB边上任意一点,∠ECF=45°,CF交AD于点F,将△CBE绕点C顺时针旋转到△CDP,点P恰好在AD的延长线上.
(1)求证:EF=PF;
(2)直线EF与以C为圆心,CD为半径的圆相切吗?为什么?

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.