满分5 > 初中数学试题 >

如图,从⊙O外一点A作⊙O的切线AB、AC,切点分别为B、C,且⊙O直径BD=6...

如图,从⊙O外一点A作⊙O的切线AB、AC,切点分别为B、C,且⊙O直径BD=6,连接CD、AO.
(1)求证:CD∥AO;
(2)设CD=x,AO=y,求y与x之间的函数关系式,并写出自变量x的取值范围;
(3)若AO+CD=11,求AB的长.

manfen5.com 满分网
(1)欲证CD∥AO,根据平行线的判断,证明∠DCB=∠OEB即可; (2)由题可知求y与x之间的函数关系式,可以通过△BDC∽△AOB的比例关系式得出; (3)求AB的长,因为AB是⊙O的切线,可先求OA,OB的长.AO+CD=11结合(2),解方程组并且检验,从而求解. (1)证明:连接BC交OA于E点, ∵AB、AC是⊙O的切线, ∴AB=AC,∠1=∠2. ∴AE⊥BC. ∴∠OEB=90°. ∵BD是⊙O的直径, ∴∠DCB=90°. ∴∠DCB=∠OEB. ∴CD∥AO. (2)【解析】 ∵CD∥AO, ∴∠3=∠4. ∵AB是⊙O的切线,DB是直径, ∴∠DCB=∠ABO=90°. ∴△BDC∽△AOB. ∴=. ∴=. ∴y=. ∴0<x<6. (3)【解析】 由已知和(2)知:,(8分) 把x、y看作方程z2-11z+18=0的两根, 解这个方程得z=2或z=9, ∴(舍去). ∴AB===.
复制答案
考点分析:
相关试题推荐
阅读下面的材料:
如图(1),在以AB为直径的半圆O内有一点P,AP、BP的延长线分别交半圆O于点C、D.
求证:AP•AC+BP•BD=AB2
证明:连接AD、BC,过P作PM⊥AB,则∠ADB=∠AMP=90°,
∴点D、M在以AP为直径的圆上;同理:M、C在以BP为直径的圆上.
由割线定理得:AP•AC=AM•AB,BP•BD=BM•BA,
所以,AP•AC+BP•BD=AM•AB+BM•AB=AB•(AM+BM)=AB2
当点P在半圆周上时,也有AP•AC+BP•BD=AP2+BP2=AB2成立,那么:
(1)如图(2)当点P在半圆周外时,结论AP•AC+BP•BD=AB2是否成立?为什么?
(2)如图(3)当点P在切线BE外侧时,你能得到什么结论?将你得到的结论写出来.
manfen5.com 满分网
查看答案
manfen5.com 满分网如图,已知⊙O的割线PAB交⊙O于A、B两点,PO与⊙O交于点C,且PA=AB=6cm,PO=12cm,
(Ⅰ)求⊙O的半径;
(Ⅱ)求△PBO的面积.(结果可带根号)
查看答案
几何课本第三册复习题七中有这样一道几何题:以Rt△ABC的直角边AC为直径作圆,交斜边AB于点D,过点D作圆的切线.求证:这条切线平分另一条直角边BC.(不必证明)
现将上述习题改变成如下问题,请你解答:
如图,以Rt△ABC的直角边AC为直径作⊙O,交斜边AB于点D,E为BC边的中点,连DE.
(1)判断DE是否为⊙O的切线,并证明你的结论.
(2)当AD:DB=9:16时,DE=8cm时,求⊙O的半径R.

manfen5.com 满分网 查看答案
如图,BC是⊙O的直径,D、E是⊙O上的两点,且弧CD=DE,连接EB、DO.
(1)求证:EB∥DO;
(2)连接EC,在∠CEB的外部作∠BEA=∠C,直线EA交CB的延长线于A,求证:直线EA是⊙O的切线;
(3)若EA=2,AB=1,求⊙O的半径长.

manfen5.com 满分网 查看答案
如图,AB是⊙O的直径,CB、CE分别切⊙O于点B、D,CE与BA的延长线交于点E,连接OC、OD.
(1)△OBC与△ODC是否全等?______(填“是”或“否”);
(2)已知DE=a,AE=b,BC=c,请你思考后,选用以上适当的数,设计出计算⊙O半径r的一种方案:
①你选用的已知数是______
②写出求解过程.(结果用字母表示)

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.