满分5 > 初中数学试题 >

如图,在△ABC中,AB=AC,内切圆O与边BC、AC、AB分别切于D、E、F....

如图,在△ABC中,AB=AC,内切圆O与边BC、AC、AB分别切于D、E、F.
(1)求证:BF=CE;
(2)若∠C=30°,CE=2manfen5.com 满分网,求AC.

manfen5.com 满分网
(1)根据切线长定理得到AF=AE,再结合AB=AC,得到BF=CE; (2)结合(1)的结论和切线长定理,得到D是BC的中点,从而得到A,O,D三点共线.根据等腰三角形的三线合一得到直角三角形ACD.根据切线长定理得到CD=CE,则根据锐角三角函数即可求得AC的长. (1)证明:∵AE,AF是⊙O的切线; ∴AE=AF, 又∵AC=AB, ∴AC-AE=AB-AF, ∴CE=BF,即BF=CE. (2)【解析】 连接AO、OD; ∵O是△ABC的内心, ∴OA平分∠BAC, ∵⊙O是△ABC的内切圆,D是切点, ∴OD⊥BC; 又∵AC=AB, ∴A、O、D三点共线,即AD⊥BC, ∵CD、CE是⊙O的切线, ∴CD=CE=2, 在Rt△ACD中,由∠C=30°,CD=2,得 AC==4.
复制答案
考点分析:
相关试题推荐
如图①,△ABC内接于⊙O,点P是△ABC的内切圆的圆心,AP交边BC于点D,交⊙O于点E,经过点E作⊙O的切线分别交AB、AC延长线于点F、G.
(1)求证:BC∥FG;
(2)探究:PE与DE和AE之间的关系;
(3)当图①中的FE=AB时,如图②,若FB=3,CG=2,求AG的长.

manfen5.com 满分网 查看答案
如图,⊙O是△ABC的内切圆,与AB、BC、CA分别相切于点D、E、F,∠DEF=45度.连接BO并延长交AC于点G,AB=4,AG=2.
(1)求∠A的度数;
(2)求⊙O的半径.

manfen5.com 满分网 查看答案
如图,⊙O的半径为1,点P是⊙O上一点,弦AB垂直平分线段OP,点D是manfen5.com 满分网上任一点(与端点A、B不重合),DE⊥AB于点E,以点D为圆心、DE长为半径作⊙D,分别过点A、B作⊙D的切线,两条切线相交于点C.
(1)求弦AB的长;
(2)判断∠ACB是否为定值?若是,求出∠ACB的大小;否则,请说明理由;
(3)记△ABC的面积为S,若manfen5.com 满分网=4manfen5.com 满分网,求△ABC的周长.

manfen5.com 满分网 查看答案
如图,有一块三角形材料(△ABC),请你画出一个圆,使其与△ABC的各边都相切.

manfen5.com 满分网 查看答案
如图,AC是⊙O的直径,BC切⊙O于点C,AB交⊙O于点D,连接DO,并延长交BC的延长线于点E.过D作⊙O的切线交BC于点F.
(Ⅰ)求证:F是BC的中点;
(Ⅱ)若BC=2,且S△DBF:S△DCE=3:2,求AD:DB的值.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.