阅读材料:如图(一),△ABC的周长为l,内切圆O的半径为r,连接OA、OB、OC,△ABC被划分为三个小三角形,用S
△ABC表示△ABC的面积.
∵S
△ABC=S
△OAB+S
△OBC+S
△OCA又∵S
△OAB=
AB•r,S
△OBC=
BC•r,S
△OCA=
CA•r
∴S
△ABC=
AB•r+
BC•r+
CA•r=
l•r(可作为三角形内切圆半径公式)
(1)理解与应用:利用公式计算边长分为5、12、13的三角形内切圆半径;
(2)类比与推理:若四边形ABCD存在内切圆(与各边都相切的圆,如图(二))且面积为S,各边长分别为a、b、c、d,试推导四边形的内切圆半径公式;
(3)拓展与延伸:若一个n边形(n为不小于3的整数)存在内切圆,且面积为S,各边长分别为a
1、a
2、a
3、…、a
n,合理猜想其内切圆半径公式(不需说明理由).
考点分析:
相关试题推荐
为了探索三角形的内切圆半径r与周长L、面积S之间的关系,在数学实验活动中,选取等边三角形(图甲)和直角三角形(图乙)进行研究.如图,⊙O是△ABC的内切圆,切点分别为点D、E、F.
(1)用刻度尺分别量出表中未度量的△ABC的长,填入空格处,并计算出周长L和面积S.(结果精确到0.1厘米)
| AC | BC | AB | r | L | s |
图甲 | | | | 0.6 | | |
图乙 | | | 5.0 | 1.0 | | |
(2)观察图形,利用上表实验数据分析、猜测特殊三角形的r与L、S之间关系,并证明这种关系对任意三角形(图丙)是否也成立?
查看答案
如图,在△ABC中,AB=AC,内切圆O与边BC、AC、AB分别切于D、E、F.
(1)求证:BF=CE;
(2)若∠C=30°,CE=2
,求AC.
查看答案
如图①,△ABC内接于⊙O,点P是△ABC的内切圆的圆心,AP交边BC于点D,交⊙O于点E,经过点E作⊙O的切线分别交AB、AC延长线于点F、G.
(1)求证:BC∥FG;
(2)探究:PE与DE和AE之间的关系;
(3)当图①中的FE=AB时,如图②,若FB=3,CG=2,求AG的长.
查看答案
如图,⊙O是△ABC的内切圆,与AB、BC、CA分别相切于点D、E、F,∠DEF=45度.连接BO并延长交AC于点G,AB=4,AG=2.
(1)求∠A的度数;
(2)求⊙O的半径.
查看答案
如图,⊙O的半径为1,点P是⊙O上一点,弦AB垂直平分线段OP,点D是
上任一点(与端点A、B不重合),DE⊥AB于点E,以点D为圆心、DE长为半径作⊙D,分别过点A、B作⊙D的切线,两条切线相交于点C.
(1)求弦AB的长;
(2)判断∠ACB是否为定值?若是,求出∠ACB的大小;否则,请说明理由;
(3)记△ABC的面积为S,若
=4
,求△ABC的周长.
查看答案