满分5 > 初中数学试题 >

阅读材料:如图(一),△ABC的周长为l,内切圆O的半径为r,连接OA、OB、O...

阅读材料:如图(一),△ABC的周长为l,内切圆O的半径为r,连接OA、OB、OC,△ABC被划分为三个小三角形,用S△ABC表示△ABC的面积.
manfen5.com 满分网
∵S△ABC=S△OAB+S△OBC+S△OCA
又∵S△OAB=manfen5.com 满分网AB•r,S△OBC=manfen5.com 满分网BC•r,S△OCA=manfen5.com 满分网CA•r
∴S△ABC=manfen5.com 满分网AB•r+manfen5.com 满分网BC•r+manfen5.com 满分网CA•r=manfen5.com 满分网l•r(可作为三角形内切圆半径公式)
(1)理解与应用:利用公式计算边长分为5、12、13的三角形内切圆半径;
(2)类比与推理:若四边形ABCD存在内切圆(与各边都相切的圆,如图(二))且面积为S,各边长分别为a、b、c、d,试推导四边形的内切圆半径公式;
(3)拓展与延伸:若一个n边形(n为不小于3的整数)存在内切圆,且面积为S,各边长分别为a1、a2、a3、…、an,合理猜想其内切圆半径公式(不需说明理由).
(1)根据上述三角形的内切圆的半径公式,由已知条件,结合勾股定理的逆定理得该三角形是直角三角形.可以首先求得其面积是30,其周长是5+12+13=30.再根据其公式代入计算; (2)同样连接圆心和四边形的各个顶点以及圆心和的切点,根据四边形的面积等于四个直角三角形的面积进行计算; (3)根据上述方法和结论,即可猜想到:任意多边形的内切圆的半径等于其面积的2倍除以多边形的周长. 【解析】 (1)以5,12,13为边长的三角形为直角三角形,易求得; (2)连接OA,OB,OC,OD,并设内接圆半径为r, 可得S四边形ABCD=S△OAB+S△OBC+S△OCD+S△ODA =a•r+b•r+c•r+d•r=(a+b+c+d)•r. ∴; (3)猜想:.
复制答案
考点分析:
相关试题推荐
为了探索三角形的内切圆半径r与周长L、面积S之间的关系,在数学实验活动中,选取等边三角形(图甲)和直角三角形(图乙)进行研究.如图,⊙O是△ABC的内切圆,切点分别为点D、E、F.
manfen5.com 满分网
(1)用刻度尺分别量出表中未度量的△ABC的长,填入空格处,并计算出周长L和面积S.(结果精确到0.1厘米)
 ACBCABrLs
图甲   0.6  
图乙  5.01.0  
(2)观察图形,利用上表实验数据分析、猜测特殊三角形的r与L、S之间关系,并证明这种关系对任意三角形(图丙)是否也成立?
查看答案
如图,在△ABC中,AB=AC,内切圆O与边BC、AC、AB分别切于D、E、F.
(1)求证:BF=CE;
(2)若∠C=30°,CE=2manfen5.com 满分网,求AC.

manfen5.com 满分网 查看答案
如图①,△ABC内接于⊙O,点P是△ABC的内切圆的圆心,AP交边BC于点D,交⊙O于点E,经过点E作⊙O的切线分别交AB、AC延长线于点F、G.
(1)求证:BC∥FG;
(2)探究:PE与DE和AE之间的关系;
(3)当图①中的FE=AB时,如图②,若FB=3,CG=2,求AG的长.

manfen5.com 满分网 查看答案
如图,⊙O是△ABC的内切圆,与AB、BC、CA分别相切于点D、E、F,∠DEF=45度.连接BO并延长交AC于点G,AB=4,AG=2.
(1)求∠A的度数;
(2)求⊙O的半径.

manfen5.com 满分网 查看答案
如图,⊙O的半径为1,点P是⊙O上一点,弦AB垂直平分线段OP,点D是manfen5.com 满分网上任一点(与端点A、B不重合),DE⊥AB于点E,以点D为圆心、DE长为半径作⊙D,分别过点A、B作⊙D的切线,两条切线相交于点C.
(1)求弦AB的长;
(2)判断∠ACB是否为定值?若是,求出∠ACB的大小;否则,请说明理由;
(3)记△ABC的面积为S,若manfen5.com 满分网=4manfen5.com 满分网,求△ABC的周长.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.